Simple Algorithms

- We start from a triangle T
 $(x_1,y_1), (x_2,y_2), \text{ and } (x_3,y_3)$

- Find all pixels inside T

- Method 1 (the worst algorithm)
 For each pixel p do
 If $p \in T$ then draw-pixel (p) end if
 End for

- Method 2 (a slight improvement)
 $B = \text{bounding-box}(T)$
 For each pixel $p \in B$ do
 If $p \in T$ then draw-pixel (p) end if
 End for

- The given previous algorithms suggest
 an important sub-problem:
 Given a triangle T, and $p = (p_x, p_y)$
 How to determine: $p \in T$
Ray Firing

- Here’s a simple approach to test if $p \in T$
 1. draw a ray from p outward in any direction
 2. count number of intersections of this ray with boundaries of T
 3. If odd, then $p \in T$, otherwise, p is not in T

- Is this method correct?
 What happens if the ray crosses at a vertex?
Polygon Scan Conversion
Implicit Line Formula

- A slightly easier method
- Consider the edge \(v_1v_2 \)
- Write down the implicit function of this line

\[
l_{1,2}(x, y) = a_{1,2}x + b_{1,2}y + c_{1,2}
\]

- Pick the sign of \(l_{1,2} \) so that \(l_{1,2}(x_3, y_3) < 0 \)
- This defines a half-plan \(h_{1,2} \)

\[
h_{1,2} = \{(x, y) : l_{1,2}(x, y) \leq 0 \}
\]

- Apply the similar process shown above to \(l_{1,3} \) and \(l_{2,3} \)
- Construct half-planes \(h_{1,3} \) and \(h_{2,3} \)
- The important observation
\[T = h_{1,2} \cap h_{1,3} \cap h_{2,3} \]

Therefore, \(p \in T \) is equivalent to
\[(p \in h_{1,2}) \text{ and } (p \in h_{1,3}) \text{ and } (p \in h_{2,3}) \]

It is the same to say

\[l_{1,2}(px,py) \leq 0 \]
\[l_{1,3}(px,py) \leq 0 \]
\[l_{2,3}(px,py) \leq 0 \]

Question:

does this algorithm work for concave polygon?
Sweep-line Algorithm

- Observation
 If \(p \in T \), then neighboring pixels are probably in the triangle, too
 (Coherence)

- Idea
 (1) sweep from top to bottom
 (2) maintain intersections of \(T \) and sweep-line “span”
 (3) paint pixels in the span

- Algorithm
 Initialize \(x_l \) and \(x_r \)
 For each scan line covered by \(T \) do Paint pixels \((x_l, y), \ldots, (x_r, y)\) on the current span
 Incrementally update \(x_l \) and \(x_r \)
 End for

- Question: how do we update \(x_l \) and \(x_r \)?

- Answer: midpoint algorithm!
Polygon Scan Conversion

- Given a simple polygon P with vertices $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$
 Find all pixels inside P

- Polygon classification
 simple convex
 simple concave
 non-simple (self-intersection)

- Once again, we could compute a bounding box and use ray casting
 \[B = \text{bounding box}(P) \]
 For each pixel $p \in B$ do
 If $p \in P$ then paint (p) end if
 End for

- But this would NOT take advantage of coherence

- Coherence
 Adjacent pixels in image space are likely sharing the similar graphic properties such as color
Polygon Scan Conversion
Polygon Classification
Scan Conversion

- More efficient algorithm
 For each scanline
 Identify all intersections $x_0, x_1, \ldots, x_{k-1}$
 Sort intersections from left to right
 Fill pixels between consecutive pairs of intersection
 $$(x_{2i}, y), (x_{2i+1}, y)$$

- We must deal with "special cases"!
 - horizontal lines
 - intersecting a vertex (double intersection)
 - unwanted intersection

- We must speed up the edge intersection detection

- Data structure for efficient implementation
 A sorted edge table
 The active edge list
 From bottom to the top
Figure 3.39

- Practical polygon scan conversion
 Many implementations just triangulate the polygon and then convert the triangles

- Extremely easy to do for convex polygons

- Triangles are often particularly nice to work with because they are always planar and simple
Special Cases