Line Drawing

- Why line drawing
 The line is the most fundamental drawing primitive with many uses
 - charts, engineering drawings, illustrations, 2D pencil-based animation, curve approximation

- Desired properties of line drawing algorithms
 - line should be straight
 - endpoint interpolation
 - uniform density for all lines
 - efficient

- Our ultimate goal — efficient and correct line drawing algorithm
 \texttt{draw-line}(x_0, y_0, x_1, y_1)
Line Drawing
Algorithm Assumption

- Point samples on 2D integer lattice
- Bi-level display: on or off
- Line endpoints are integer coordinates
- All line slopes are: $|k| \leq 1$
- Lines are ONE pixel thick
Simple Algorithm

- **Draw-line** \((x_0, y_0, x_1, y_1)\)
 - let \(\delta y = y_1 - y_0, \delta x = x_1 - x_0\)
 - for \(x = x_0\) to \(x_1\)
 - \(y = \text{round}(y_0 + (x - x_0)(\delta y / \delta x))\)
 - draw-point \((x, y)\)
 - end for

- Why does the above procedure work?

- **Explicit definition of the line**
 \[y = \frac{\delta y}{\delta x} (x - x_0) + y_0 \]

 where \(\delta y = y_1 - y_0\), and \(\delta x = x_1 - x_0\)
Line Equations

• Parametric equation

\[x(t) = x_0 + t(x_1 - x_0) \]
\[y(t) = y_0 + t(y_1 - y_0) \]

where \(t \in [0, 1] \)

how about when \(t < 0 \) or \(t > 1 \)

• Vector expression

\[p(t) = p_0 + t(p_1 - p_0) \]

\[p(t) = (1 - t)p_0 + tp_1 \]

where \(p = [x, y]^\top \), how about \(p_0 \) and \(p_1 \)

• How do we improve the previous algorithm?

• Observations

\[y_{curr} = y_0 + (x - x_0) \frac{\delta y}{\delta x} \]
\[y_{next} = y_0 + (x + 1 - x_0) \frac{\delta y}{\delta x} \]
\[y_{next} = y_{curr} + \frac{\delta y}{\delta x} \]

- A more efficient algorithm

\[x = x_0; \ y = y_0 \]
\textbf{draw-point (x,y)}

\textbf{for} \ x \ \textbf{from} \ x_0 + 1 \ \textbf{to} \ x_1

\[y = y + \frac{\delta y}{\delta x} \]
\textbf{draw-point (x, round(y))}

\textbf{end for}
Midpoint Algorithm

• Implicit equation (expression)

\[f(x, y) = (x - x_0)\delta y - (y - y_0)\delta x \]

If \(f(x, y) = 0 \), then \((x, y)\) is on the line
If \(f(x, y) > 0 \), then \((x, y)\) is below the line
If \(f(x, y) < 0 \), then \((x, y)\) is above the line

• Midpoint algorithm is a recursive algorithm!

• Ideas!!!

• Consider \(d = f(x_p + 1, y_p + 0.5) \)

• There are three different cases

 – if \(d < 0 \), line is below midpoint, choose E
 – if \(d > 0 \), line is above midpoint, choose NE
 – if \(d = 0 \), line is passing midpoint, either E or NE

• For recursive algorithm, we MUST consider the subsequent step!
• If \(E \) is chosen, the NEW \(E \) is \((x_p + 2, y_p) \),
 the NEW NE is \((x_p + 2, y_p + 1) \),
 the NEW midpoint is \((x_p + 2, y + 0.5) \)
 \[
d_{\text{new}} = f(x_p + 2, y + 0.5)
\]
 \[
d_{\text{new}} - d_{\text{old}} = \delta y
\]
 \[
d_{\text{new}} = d_{\text{old}} + \delta y
\]
• If NE is chosen, the NEW \(E \) is \((x_p + 2, y_p + 1) \),
 the NEW NE is \((x_p + 2, y_p + 2) \),
 the NEW midpoint is \((x_p + 2, y + 1.5) \)
 \[
d_{\text{new}} = f(x_p + 2, y_p + 1.5)
\]
 \[
d_{\text{new}} - d_{\text{old}} = \delta y - \delta x
\]
• This process repeats recursively,
 stepping along \(x \) from \(x_0 \) to \(x_1 \)
• How about initialization?
 At the beginning, \(x_p = x_0, \ y_p = y_0 \)
 \[
d = f(x_0 + 1, y_0 + 0.5) = \delta y + \frac{\delta x}{2}
\]
Implicit Equation

\[f(x, y) < 0 \]

\[f(x, y) = 0 \]

\[f(x, y) > 0 \]
Midpoint Motivation

Midpoint x_p, y_p
Midpoint Initialization
Midpoint Algorithm

- **draw-line** \((x_0, y_0, x_1, y_1)\)

  ```
  int \(x_0, y_0, x_1, y_1\)
  \{
  int \(\delta x, \delta y, incE, incNE, x, y,\)
  real \(d\)
  \(\delta x = x_1 - x_0\) \(\delta y = y_1 - y_0\) \(d = \delta y - \frac{\delta x}{2}\)
  \(incE = \delta y, incNE = dy - dx\) \(y = y_0\)
  for \(x\) from \(x_0\) to \(x_1\)
  draw-point \((x, y)\)
  if \(d > 0\), then \(d = d + incNE, y = y + 1\)
  else \(d = d + incE\)
  end for
  \}
  ```

- \(d\) is not an integer, however, only the sign matters!

- **We prefer an integer-only algorithm!!!**
 \[f'(x, y) = 2f(x, y)\]
 \[d' = 2d\]
 \[d' = 2\delta y - \delta x\]
Midpoint (integer-only) Algorithm

- draw-line \((x_0, y_0, x_1, y_1)\)

  ```
  int x_0, y_0, x_1, y_1
  { int \delta x, \delta y, incE, incNE, x, y, d
    \delta x = x_1 - x_0
    \delta y = y_1 - y_0
    d = 2\delta y - \delta x
    incE = 2\delta y, incNE = 2(\delta y - \delta x)
    y = y_0
    for x from x_0 to x_1
      draw-point (x,y)
    if d > 0, then d = d + incNE, y = y + 1
    else d = d + incE
    end for }
  ```

- Assumptions
 - slopes: \(0 \leq \frac{\delta y}{\delta x} \leq 1\)
 - line endpoints are integer coordinates

- How about other cases
– negative slope
– slope larger than 1

• If the slope is larger than 1, we use symmetry to switch \(x \) and \(y \)!

• If negative slope, we use \(x \) and \(-y \)
Generalizations

- Generalize to all cases for line drawing
- Algorithms for circle-drawing
- Algorithms for ellipses, conic section drawing
- Line drawing: P84-P92
- Circle-generating algorithms: P97-P102
- Ellipse-generating algorithms: P102-P107
Circle

- Implicit function

\[f(x, y) = (x - x_0)^2 + (y - y_0)^2 - r^2 \]

- If \(f(x, y) = 0 \), then \((x, y)\) is on the circle

- If \(f(x, y) > 0 \), then \((x, y)\) is outside the circle

- If \(f(x, y) < 0 \), then \((x, y)\) is inside the circle

- Explicit definition

\[y = y_0 + \sqrt{r^2 - (x - x_0)^2} \]

or

\[y = y_0 - \sqrt{r^2 - (x - x_0)^2} \]

where \(-r \leq (x - x_0) \leq r\)

- Parametric definition

\[x(\theta) = x_0 + r \cos(\theta); y(\theta) = y_0 + r \sin(\theta) \]
where $\theta \in [0, 2\pi]$

- Equations for ellipses!