
Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-4400
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu
http://www.cs.sunysb.edu/~qin
Two Critical Issues

• (1) Course pre-requisites: Do I have sufficient amount of background knowledge???

• (2) Satisfying all course requirements: can I succeed in this course???

• Assuming we have all the required background, but why we are still failing in a course like this one: key elements include studying what are required, spending enough amount of time in programming assignments, final project, starting early, time management, etc.
Course Prerequisites

- **Mathematical skills:** fundamental knowledge on calculus, linear algebra, analytic geometry, etc. (Basic mathematical training at the undergraduate level, Appendix A Mathematics for Computer Graphics is a good starting point to refresh our memory)

- **Computer science background:** programming skills at the basic undergraduate level (C/C++, OpenGL (graphics library))
Course Prerequisites

• Essentially, you need to have an undergraduate education in computer science or engineering (at the senior level) with basic knowledge on computer programming.

• You need to speak to the instructor if you are not sure about your background knowledge and course prerequisites.
Course Prerequisites

• Please note that, just like other CSE3xx level courses in our department, this is an senior-level under-graduate course!!!
The Course Objectives

• Provide our undergraduate students a comprehensive knowledge on fundamentals of computer graphics, including basic concepts, theory, algorithms, techniques, and applications for modeling, simulation, rendering, animation, human-computer interactions, and other key elements of graphics-driven visual computing.

• Demonstrate the significance of these mathematical and computational tools and graphics algorithms in visual computing and relevant areas.

• Emphasize a "hands-on" approach to both the better understanding of graphics concept/theory/algorithms and the effective use of graphics techniques in various applications.
The Course Load and Strategies

• Reading our required textbook (we will be covering about 70-80% contents of this book during this semester) and learn knowledge about background, theory, algorithms, techniques, system components and architecture, software and hardware elements, applications, etc.

• Practice on exercises documented at the end of each chapters (two types of exercises: problem-solving questions, and graphics programming examples)
The Course Load and Strategies

• All concepts, theories, algorithms, techniques, system matters, software and hardware elements, and applications relevant to computer graphics are well within the boundary of our textbook, so please DO read the book and practice on exercises.

• At the same time, many programming examples throughout this book (in C and with the help of OpenGL, graphics library), so practice on those programming examples as well.
Our Mechanism to Grade This Course

• Programming assignments for us to get familiar with graphics programming basics
• Two exams (in classroom) to test our abilities in understanding the course material, including concepts, theories, algorithms, techniques, software and hardware elements, applications, etc.
• But, ultimately, we are doing a course project that allows us to integrate theory with programming capabilities
Improving our Problem-Solving Skills

- Understand the problem via paper reading
- (Re)-implement a published paper by developing a graphics system that demonstrate that you are: learning graphics knowledge, and gaining graphics programming skills
- A strategy leading to success: reading the book and the paper, thinking about your interest, proposing your project (based on a published paper), and delivering results
My Contact Information

Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu
http://www.cs.sunysb.edu/~qin
Office: Room 2426, CS Building
Lecture Information

- **WHEN:** MW 2:30pm - 3:50pm
- **WHERE:** Humanities, Rm. 1003
- **OFFICE HOURS:** MW 3:50pm - 5:20pm, or by appointment!
- **Teaching Assistant(s):** Computer Science PhD candidate, XYZ, xyz@cs.stonybrook.edu
- **TA office hours:** Tuesdays and Thursdays TBA!!!
TA Information for CSE328

• TA: (Computer Science PhD student): Mr. XYZ (Details to be announced a bit later after TA assignment is done)!!!
• Email: xys@cs.stonybrook.edu
• TA OFFICE HOURS: (TBD) Tuesday and Thursday!!!
• OpenGL Tutorials: 2-3 lectures throughout the semester (maybe 2 lectures in Feb/Mar, one lecture in April)???
• http://www.cs.sunysb.edu/~xyz/ese328/
OpenGL Help for CSE328

- My TAs in previous years have collected many examples:

- TA Website (for openGL tutorials):
OpenGL Tutorials

- Tutorials for Modern OpenGL (3.3+)
How to Get a “A”?

• Two programming assignments (10% each, 20% total), roughly speaking, one programming assignment every five weeks!!!

• Midterm-1, at the end of 6 weeks (15%)

• Midterm-2, at the end of 12 weeks (15%)

• NO final exam!!!

• Course final project (50%)

• The above percentages will collectively comprise 100% of this course’s requirements!!!
Key Components

- Computer graphics pipeline, basic concepts, theory, algorithms, and techniques
- Modeling: representation choices of different models
- Rendering: simulating light and shadow, camera control, visibility, discretization of models
- HCI (human-computer interface): specialized I/O devices, graphical user interfaces
- Animation: lifelike characters, natural phenomena, surrounding virtual environments
- Advanced topics
Main Concentrations

- Mathematical concepts, modeling and rendering theory, and computational tools
- Fundamental algorithms in representation, modeling, simulation, rendering, animation, etc.
- Geometric (and graphical and visual) modeling and simulation techniques, and geometric processing and analysis tools
- A large variety of applications in graphics and visualization as well as other visual computing areas
- Several advanced topics and they are all research-oriented, representing the most sophisticated ones
Our Course

- A subset of key concepts, theory, algorithms, techniques, and applications
- Extensive topics with a main focus on our unique course mission
- Comprehensive lectures (focusing on geometric intuition, good ideas, and application needs)
- Numerous slides, figures, images, and videos for easy understanding (after all, this is the nature of graphics and visualization)
- Active students’ involvements
Course Facts

• This is a senior-level undergraduate course for both CSE and ISE students!!!

• Can I take this course? YES, if YOU
 – are a undergraduate student (at the senior-level) with CS background, have basic mathematical skills in calculus, linear algebra, and analytic geometry, have BASIC knowledge on computer programming, or talk to the instructor

• One required textbook, several suggested references

• Lecture notes are important!!! Class attendance in critical!!!
Course Facts

• Students are expected to
 – Take Midterm-1 (15%) at the end of 6 weeks;
 – Take Midterm-2 (15%) at the end of 12 weeks;
 – Finish 2 programming assignments (10% each, 20% total);
 – Complete one course project, present your project in the class, and submit the final report for your course project (50%);

• What projects are appropriate?
 – Talk to the instructor and suggest possible topics of interest
 – Projects also available from the instructor
Programming Assignments and Course Project

- Two programming assignments: 10% each, 20% total
- I expect that, the first programming assignment will be due around the 5th week of the semester, and the second programming assignment will be due around the 10th week of the semester, more details TBA
- Course project: 50%
- Basic programming and course project requirements
 - Interactive interface (graphics-based)
 - Intuitive and easy to understand
 - Efficient (fast, high-performance)
 - Basic functionalities
 - Examples
 - Flexible and easy to generalize
If You are Serious about this Course

• Study my on-line, electronic course notes, and read the textbook
• Prepare for two midterm tests that cover fundamentals of computer graphics in the aforementioned aspects
• Successfully complete two programming assignments (Details TBA)
• Start to think about your course project by trying to read a few research papers
• Start to think about how to implement your course project
• Write a proposal on your project and start to work on it immediately
• Finish your project by the end of this semester and submit your final course project
• You are welcome to communicate with me via emails, call me, or come to meet with me during my office hours in my office!
• Feel free to make appointments with me!
Course Project Plan and Deadlines

• Study 1-2 papers throughout the semester
• Submit your own one-page proposal on course project (Feb 25 Wednesday is the deadline)
• Implement basic functionalities and user interface before our mid-term check point (April 8 Wednesday is the deadline)
• Final project and report (Electronic submission, May 7, Thursday 11:59pm, this is a HARD deadline, no extension!!!)
• Class presentation & final project demonstration (all show up please, each will present 15 minutes in class, tentatively set to be 5/8-10, Fri & Sat & Sun)
• Individual project or group project (up to 2 students) is okay!!!
• Office hours / individual meetings
• Penalty for late submission (25% each day)
Important Deadlines for CSE328

• Two programming assignments: deadlines (roughly speaking, once every 4-5 weeks, Feb. 25 (the end of 5th week) and April 1 (the end of 10th week))

• Two mid-term exams: deadline TBD (roughly speaking, once every 6 weeks, Mar. 4 and Apr. 22)

• Feb. 25 (Wednesday): one-page proposal for the course project

• April 8 (Wednesday): mid-term check point

• May 7, 11:59pm final project due (code + report)

• May 8-10: final course project presentation in classroom
Course Project Grading Requirements

1. Meet with the instructor for (at least) 30 minutes to decide your study plan for this course, review your research experiences in the past, and plan for the future, and this should be done during the next four weeks.

2. Upon the individual meeting with the instructor, select 1-2 research papers and start to read them immediately.

3. Write and submit a one-page technical proposal on what you are planning to do during the next 2 months, roughly 9-10 weeks between the proposal deadline and the end of the semester (programming-driven research projects, re-implementation of at least one part from one paper, etc.).

4. Finish all the course requirements for all check points.

5. Give a final presentation (up to 15 minutes) based on your final technical report for your project (6-8 pages).

6. Submit your software code, ppt presentation file, and project report at the end of the semester.
Course Project (50%)

- One-page project proposal (2/25 W): 5%
- Mid-term demo with preliminary results, ppt presentation + software (4/8 W): 5%
- Final project technical report + ppt file (5/7 Th 11:59pm): 5%
- A working system + software codes (5/7 Th 11:59pm): 30%
- Oral ppt presentation & final demo (5/8-10): 5%
Questionnaire

1. List your background courses/knowledge/education related to graphics/visualization, programming language, mathematical requirements, and your current education level

2. What is the main goal/purpose for you to take this course (e.g., learn the knowledge, pursue a career in this area)

3. How does this course help your future professional career

4. Your expectations on the course

5. Your studying plan

6. Other important issues that you can think of about the course
How to Get a “A”?

• Finish all the course requirements, and I will issue a “A” grade
My Goals for this Course

• My bottom-line is that everybody in this class will learn something by the end of this semester, so that people are NOT wasting their time here.

• My strategy: breadth (I will make the slides available to everybody) + depth (I will pay attention to several important topics).

• In order to realize these goals, I would like to get everybody involved, and I very much encourage INTERACTION!

• Students must finish their assignments (mid-term exams, two programming assignments, project proposal, various check points for the course project, final project demo, final project report, etc.) and course projects and they should give presentations to the entire class.

• Success in our undergraduate education: a good idea (project with a research goal) + technical writing (putting together technical reports) skills + communication skills (oral presentations in our class).
What is Computer Graphics

The creation of, manipulation of, analysis of, and interaction with pictorial representations of objects and data using computers

- Dictionary of Computing

Computer Graphics is also called Image Synthesis

A picture is worth a thousand words

- Chinese Proverb
Computer Graphics Components
Computer Graphics

- (Realistic) pictorial synthesis of real and/or imaginary objects from their computer-based models (datasets)
- It typically includes modeling, rendering (graphics pipeline), and human-computer interaction
- So, we are focusing on computer graphics hardware, software, and mathematical foundations
- Computer Graphics is computation
 - A new method of visual computing
- Why is Computer Graphics useful and important?
- Course challenges: more mathematics oriented, programming requirements, application-driven, inter-disciplinary in nature, etc.
Basic Elements of Computer Graphics

- Graphics modeling: representation choices
- Graphics rendering: geometric transformation, visibility, discretization, simulation of light, etc.
- Graphics interaction: input/output devices, tools
- Animation: lifelike characters, their interactions, surrounding virtual environments
Earlier Days of Computer Graphics

- Visual display of data (graphs and charts)
Mathematical Function Plots
Mathematical Background

- **Computer Graphics has a strong 2D/3D geometry component**
- **Basic linear algebra is also helpful** — matrices, vectors, dot products, cross products, etc.
- **More continuous math (vs. discrete math)** than in other typical computer science courses
- **Function plots, curves, and surfaces**
Primary Topics

- Overview, applications
- Basic components, history development
- Hardware, system architecture, raster-scan graphics
- Line drawing, scan conversion
- 2D transformation and viewing
- 3D transformation and viewing
- Hierarchical modeling
- Interface
- Geometric models
- Color representations
- Hidden object removal
- Illumination models
- Advanced topics
A Very Good Textbook for General Issues in Computer Graphics

OpenGL Reference Books

Why Graphics and Visualization

• A Chinese proverb: “a picture is worth a thousand words.”

• “A picture is worth more than a thousand words.” – ancient proverb
One Picture
1000 words (or just 94 words), many letters though…

It looks like a swirl. There are smaller swirls at the edges. It has different shades of red at the outside, and is mostly green at the inside. The smaller swirls have purple highlights. The green has also different shades. Each small swirl is composed of even smaller ones. The swirls go clockwise. Inside the object, there are also red highlights. Those have different shades of red also. The green shades vary in a fan, while the purple ones are more uni-color. The green shades get darker towards the outside of the fan…………………………………………..
Computer-Aided Design
Architectural Engineering
Scientific Visualization/Simulation

Flowfield around a Highrise Building

velocity vectors and absolute velocity
Digital Ocean
Geosciences/GIS
Biology (Protein on DNA)
Medical Imaging and Processing

An x-ray is a photo taken with a machine which passes electromagnetic radiation through the body, capturing an image of the internal structures.

Multiple fragments
Digital Entertainment
Graphic Arts
Graphics Examples
What is Visualization

Visualization is a method of extracting meaningful information from complex or voluminous datasets through the use of interactive graphics and imaging.
Why Graphics and Visualization

- Enable scientists (also engineers, physicians, general users) to observe their simulation and computation
- Enable them to describe, explore, and summarize their datasets (models) and gain insights
- Offer a method of SEEING the UNSEEN
- Reason about quantitative information
- Enrich the discovery process and facilitate new inventions
Why Graphics and Visualization

- Analyze and communicate information
- Revolutionize the way scientists/engineers/physicians conduct research and advance technologies
- About 50% of the brain neurons are associated with vision
- The gigabit bandwidth of human eye/visual system permits much faster perception of visual information and identify their spatial relationships than any other modes
 - Computerized human face recognition
More Examples

Images

Points

Volumes
More Examples
Terrain Modeling and Rendering
Medicine and Health-care
Entertainment
Virtual Environment
National Security
Virtual Tourism
Design and Manufacturing
What are Happening Now

- Network Graphics

 3D Advertisement

 Server ➔ Virtual Museum ➔ Client

 Live Sports Broadcast
What are Happening Now

• Wireless Graphics
What Are Our Ultimate Goals?

- A large variety of datasets (acquired via scanning devices, super-computer simulation, mathematical descriptions, etc.)
- A pipeline of data processing that consists of data modeling (reconstruction), representation, manipulation (rigid transformation or deformation), classification (segmentation), feature extraction, simulation, analysis, visual display, conversion, storage, etc.
- Visual information processing in the intelligent way (Intelligent Information Processing)
What Are Our Ultimate Goals?

• Datasets that are huge, multi-dimensional, time-evolving, unstructured, multi-attributes (geometric info. + material distributions), scattered (both temporal and spatial)....

• We are investigating mathematical tools and computational techniques for data modeling, reconstruction, manipulation, simulation, analysis, and display
Challenges

- TOO MUCH data
- The number of data sources keeps increasing
- Sensor quality and resolution are increasing
- Existing instruments are still available
- The speed of supercomputer is faster than ever
- We must do something (besides collecting and storing the datasets)
- We must deal with the huge datasets effectively
- Visual communication, improve our visual interaction with data
Challenges

• Data-driving, scientific computing to steer calculations
• Real-time interaction with computer and data experimentation
• Drive and gain insight into the scientific discovery process
Related Fields

- **Computer graphics (image synthesis)**
 - Generate images from complex multivariate datasets
- **Image processing, signal processing**
- **Image understanding (pattern recognition)**
 - Interpret image data
- **Computational vision**
- **Human-computer interaction**
 - Mechanisms to communicate, use, perceive visual information
- **Computer-aided design**
- **Neurological/physiological studies on human brain and our visual system**
sensors, scanners, cameras

data

generating/retrieving

super-computers

geometric model (structures)

discretization

topology

image (signal)

digitalization

transformation

computer graphics

computer vision

display device

film recorder

image processing

transcoding
Computer Graphics Pipeline

- Data acquisition and representation
- Modeling data and their (time-varying) behaviors (e.g., physical experiments or computational simulations)
- Graphics system and software environments for data rendering
- Image-based techniques
Data Sources

- Scanned, computed, modeled data
- The first process is data-gathering
- Large variety of data sources and attributes
- Extremely large-scale datasets
- Require real-time processing
Data Acquisition and Processing

- Pixels and voxels
- Regular & irregular grids
- Numerical simulations
- Surface or volumetric data
- Scalar, vector, tensor data with multiple attributes
- Higher-dimensional and/or time-varying data
- Popular techniques
 - Contouring, iso-surfaces, triangulation, marching cubes, slicing, segmentation, volume rendering, reconstruction
- Image-based processing techniques
 - Sampling, filtering, anti-aliasing, image analysis and manipulation
Information Domain

- Sciences (e.g., statistics, physics)
- Engineering (e.g., empirical observations for quality control)
- Social events (e.g., population census)
- Economic activities (e.g., stock trading)
- Medicine (e.g., computed tomograph (CT), magnetic resonance imaging (MRI), X-rays, ultrasound, various imaging modalities)
- Geology
Information Domain

- Biology (e.g., electronic microscopes, DNA sequences, molecular models, drug design)
- Computer-based simulations (e.g., computational fluid dynamics, differential equation solver, finite element analysis)
- Satellite data (e.g., earth resource, military intelligence, weather and atmospheric data)
- Spacecraft data (e.g., planetary data)
- Radio telescope, atmospheric radar, ocean sonar, etc.
- Instrumental devices recording geophysical and seismic activities (e.g., earthquake)
Graphics and Visualization

- Data acquisition, representation, and modeling
- Imaging processing
- Visualization (displaying) methods and algorithms
- More advanced research topics
Pathway to Success

- Highly-motivated
- Hard-working
- Start as soon as possible
- Communicate with the instructor on a regular basis
- Actively interact with your fellow students
- Visit libraries and internets frequently for papers and software system
- Read as many papers as possible
- Work on your course project
Computer Graphics

• “The purpose of scientific computing is insight, not numbers,” by Richard Hamming many years ago

• These fields are all within computer science and engineering, yet computer graphics spans multi-disciplines

• Computer Graphics (another definition)
 – Application of computers to the disciplines of sciences/engineering
Computer Graphics

- Computer Graphics is application-driven, so what are its applications?
Applications

- **Simulation and training**: flight, driving
- **Scientific visualization**: weather, natural phenomena, physical process, chemical reaction, nuclear process
- **Science**: Mathematics, physics (differential equations), biology (molecular dynamics, structural biology)
- **Environments sciences**
- **Engineering** (computational fluid dynamics)
- **Computer-aided design/manufacturing** (CAD/CAM): architecture, mechanical part, electrical design (VLSI)
Applications

- Art and Entertainment, animation, commercial advertising, movies, games, and video
- Education, and graphical presentation
- Medicine: 3D medical imaging and analysis
- Financial world
- Law
- WWW: graphical design and e-commerce
- Communications, interface, interaction
- Military
- Others: geographic information system, graphical user interfaces, image and geometric databases, virtual reality, etc.
Journals and Conferences

- Computer Graphics (proceedings of ACM SIGGRAPH)
- ACM Transactions on Graphics
- IEEE Transactions on Visualization and Computer Graphics
- IEEE Computer Graphics and Applications
- Computer-Aided Design
- Computer Aided Geometric Design
- Others!!!
Why Graphics and Visualization

• A Chinese proverb: “a picture is worth a thousand words.”

• “A picture is worth more than a thousand words.” – ancient proverb
Key Components

- **Modeling**: representation choices of different models
- **Rendering**: simulating light and shadow, camera control, visibility, discretization of models
- **HCI (human-computer interface)**: specialized I/O devices, graphical user interfaces
- **Animation**: lifelike characters, natural phenomena, surrounding virtual environments