2D Clipping

Clipping examples
2D Clipping

- Points
- Lines
- Polygons
Point Clipping

Point clipping

-
Point Clipping

Assume that the window is defined as

\[x_l \leq x \leq x_r \]
\[y_b \leq y \leq y_t \]

Then point clipping is straightforward and simple.

Point \((x, y)\) is plotted if

\[x \in [x_l, x_r], \]
and

\[x \in [y_b, y_t] \]

Pay attention to

(1) homogeneous coordinates
(2) equations of lines
Line Clipping

Line clipping
Line Clipping

- Line clipping operations should comprise the following cases
 - totally plotted
 - partially plotted
 - not plotted at all

- Please note that even though neither of two vertices is within the window, certain part of the line segment may be still within!

- There are many different techniques for clipping lines in 2D

- The fundamentals are
 (1) line equations and (2) intersection computation

- Next, we will discuss Cohen-Sutherland algorithm
Cohen-Sutherland Algorithm

- It is not the most efficient algorithm
- It is one the most commonly used
- The key technique is 4-bit code:
 \[TBRL \text{ where} \]
 \[T \text{ is set (to 1) if } y > \text{top} \]
 \[B \text{ is set (to 1) if } y < \text{bottom} \]
 \[R \text{ is set (to 1) if } x > \text{right} \]
 \[L \text{ is set (to 1) if } x < \text{left} \]
Window Regions

<table>
<thead>
<tr>
<th></th>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>P0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **x** = left
- **y** = top
- **x** = right
- **y** = bottom

- P0
- P1
Algorithm

- Assume two endpoints are p_0 and p_1

- If $\text{code}(p_0) \lor \text{code}(p_1)$ is 0000,
 the line can be trivially accepted,
 the line is drawn

- If $\text{code}(p_0) \land \text{code}(p_1)$ is NOT 0000,
 the line can be trivially rejected,
 the line is not drawn at all

- Otherwise, compute the intersection points of
 the line segment and window boundary lines
 (make sure to check all the boundary lines)
Line Intersection

[(x1, y1), (x2, y2)]

a

b

c

d

e

f

x=l

y=b

y=t

x=r
Intersection Computation

- Line equation

\[y = y_1 + m(x - x_1) \]

where

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

- Line intersection with the left vertical boundary

\[x = l \]

Assume the intersection is \(c \)

\[\begin{cases} x = l \\ y = y_1 + m(l - x_1) \end{cases} \]

Line \(ab \) is clipped w.r.t. \(x = l \), now it becomes \(cb \)

- Line intersection with the top boundary

\[y = t \]

Assume the intersection is \(d \)

\[\begin{cases} y = t \\ x = \frac{1}{m}(t - y_1) + x_1 \end{cases} \]
Line cb is clipped w.r.t. $y = t$, line cb becomes cd

- Line intersection with the right boundary
 \[x = r \]
 Assume the intersection is e
 \[
 \begin{cases}
 x = r \\
 y = y_1 + m(r - x_1)
 \end{cases}
 \]
 Line cd is clipped w.r.t. $x = r$, line cd becomes ce

- Line intersection with the bottom boundary
 \[y = b \]
 Assume the intersection is f
 \[
 \begin{cases}
 y = b \\
 x = \frac{1}{m}(b - y_1) + x_1
 \end{cases}
 \]
 Line ce is clipped w.r.t. $y = b$, line ce becomes fe

- So, the entire process is
 \[ab \Rightarrow \]
 \[cb \Rightarrow \]
Note that, various improvements are possible! using parametric representation of line questions, P230
create more regions around the clip window, P233
line clipping using polygon
- convex polygon, P235
- concave polygon, split in into several convex polygon, P236
Polygon Clipping
Polygon Clipping
Polygon Clipping

- Line clipping algorithms will lead to a set of disjoint line segment chains.
- In general, clipping each edge will not work!
- We shall not clip each edge of the polygon w.r.t. the window boundary one at a time.
- We treat the polygon as a whole object.
- Clip the entire object against each boundary of the window.
- Sutherland-Hodgman algorithm
 - any polygon (convex or concave)
 - any convex clipping polygon
Polygon Clipping Example
Algorithm

- Sutherland-Hodgman algorithm
- Vertex list of the current polygon ⇒
- Clip against edges of the window boundary ⇒
- New vertex list of the new polygon
- The algorithm clips against all four edges in a sequential order, producing a new vertex list each time
Polygon Clipping Example