
CSE 312 – Legal, Social, and Ethical Issues
in Information Systems

Stony Brook University

http://www3.cs.stonybrook.edu/~cse312

8.1 Failures and Errors in Computer Systems
8.1.3 System Failures

8.2 Case Study: The Therac-25
8.2.1 Therac-25 Radiation Overdoses
8.2.2 Software and Design Problems
8.2.3 Why So Many Incidents?
8.2.4 Observations and Perspective

8.3 Increasing Reliability and Safety
8.3.1 Professional Techniques
8.3.2 Trust the Human or the Computer System?
8.3.3 Law, Regulation, and Markets

8.4 Dependence, Risk, and Progress
8.4.1 Are We Too Dependent on Computers?
8.4.2 Risk and Progress

2Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

FAILURES AND ERRORS IN COMPUTER SYSTEMS
§Most computer applications are so complex it is

virtually impossible to produce programs with no
errors

§Real incidents:
“Navigation System Directs Car Into River”
“Data Entry Typo Mutes Millions of U.S. Pagers”
“Flaws Found in Software That Tracks Nuclear
Materials”
“Software Glitch Makes Scooter Wheels Suddenly
Reverse Direction”
“IRS Computer Sends Bill for $68 Billion in Penalties”
“Robot Kills Worker”
“California Junks $100 Million Child Support System”
“Man Arrested Five Times Due to Faulty FBI Computer
Data”

3Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Are computer systems too unreliable and too
unsafe to use?
§The cause of failure is often more than one factor
§Computer professionals must study failures to

learn how to avoid them
§ faulty design
§ confusing documentation
§ careless or insufficiently trained users
§poor user interfaces
§ sloppy manufacturing or servicing

§Computer professionals must study failures to
understand the impacts of poor work
§ distinguish between errors we should accept as trade-offs for the benefits of

the system and errors that are due to inexcusable carelessness,
incompetence, or dishonesty

4Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Problems for Individuals in their roles as
consumers

§Billing errors
§ A woman received a $6.3 million bill for electricity (the

correct amount was $63)
§ IRS:

§ sent an Illinois couple a bill with $68 billion in penalties
§ sent 3000 people bills for slightly more than $300 million
§ sent a woman a $40,000,001,541.13 bill

§ The auto insurance rate of a 101-year-old man suddenly
tripled: the rates depend on age, but the program
handled ages only up to 100, so it mistakenly classified
the man as a teenager

§ Hundreds of Chicago cat owners received bills from the
city for failure to register dachshunds, which they did
not own (the code in one DB for cat was a dachshund in
the other DB)

5Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Problems for Individuals in their roles as
consumers

§ Inaccurate and misinterpreted data in databases
§ Large population where people may share names

§ Stores used a database to screen job applicants. It listed a man as a shoplifter- A
real shoplifter had given the police the innocent man’s identification from a lost
wallet

§ A family was harassed, threatened, and physically attacked after their state posted
an online list of addresses where sex offenders live – the state did not know the
offender had moved away before the family moved in

§ A high school excluded a 14-year-old boy from football and some classes without
explanation because two schools used different disciplinary codes in their
computerized records: the boy had been guilty of chewing gum and being late, but
the system listed him as a drug user

§ Overconfidence in the accuracy of data
§ FBI’s National Crime Information Center (NCIC) database showed the innocent

man as wanted—someone using his name was committing crimes.

§ Errors in data entry
§ Lack of accountability for errors 6

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§ Modern communications, power, medical, financial, retail,

and transportation systems depend heavily on computer
systems
§ Millions of BlackBerry users did not get their email for

nine hours after the company installed a faulty software
update.

§ Customers of AT&T lost telephone service for voice and
data for hours because of a software error in a four-
million-line program.

§ A three-line change in a two-million-line
telecommunications switching program caused a failure
of telephone networks in several major cities
§ the program underwent 13 weeks of testing, but it was not

retested after the change—which contained a typo.
§ American Express Company’s credit card verification

system failed during the Christmas shopping season.
§ Merchants had to call in for verification, overwhelming the call

center

7Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§ Galaxy IV satellite computer failed

§ Pager service stopped for an estimated 85% of users in the United
States, including hospitals and police departments.

§ Airlines that got their weather information from the satellite had to delay
flights.

§ The gas stations of a major chain could not verify credit cards.

§ An error in a software upgrade shut down trading on the Tokyo Stock
Exchange

§ A glitch in an upgrade in the computer system at Charles Schwab
Corporation crashed the system for more than two hours and caused
intermittent problems for several days. Customers could not access
their accounts or trade online.

§ A computer malfunction froze the London Stock Exchange for almost
eight hours—on the last day of the tax year, affecting many people’s
tax bills

§ Amtrak’s reservation and ticketing system failed during Thanksgiving
weekend caused delays

§ Virgin America airline switched to a new reservation system a month
before Thanksgiving and its website and checkin kiosks did not work
properly for weeks 8
Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§ The $125 million Mars Climate Orbiter disappeared when it should have gone

into orbit around Mars.
§ One team working on the navigation software used English-measure units

while another team used metric units.

§ NASA's Spirit rover became unresponsive a few weeks after landing on Mars.
§ Engineers found that too many files had accumulated in the rover's flash

memory

§ Mars Climate Orbiter was also destroyed due to software on the ground
generating commands in pound-force (lbf), while the orbiter expected
newtons (N).

§ Mars Polar Lander was destroyed because its flight software mistook
vibrations due to atmospheric turbulence for evidence that the vehicle had
landed and shut off the engines 40 meters from the Martian surface

§ A booster went off course during launch, resulting in the destruction of NASA
Mariner 1 because of an incorrect formula in its FORTRAN software

§ The European Space Agency's Ariane 5 Flight 501 was destroyed 40 seconds
after takeoff because of a bug in the on-board guidance software

§ Mars Pathfinder mission was jeopardised by a bug in concurrent software
shortly after the rover landed

§ A Zenit 3SL launch failed due to faulty ground software not closing a valve in
the rocket's second stage pneumatic system 9

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§ Voting systems

§ The U.S. presidential election of 2000 demonstrated some of the
problems of old-fashioned election machines and paper or punch-
card ballots.

§ Human vote counters found these ballots sometimes difficult to read
or ambiguous

§ In 2002, Congress passed the Help America Vote Act and authorized $3.8
billion to improve voting systems.

§ By the 2006 elections, only a very small percentage of Americans
voted with paper ballots

§ Technical failures
§ Machines in North Carolina lost more than 4000 votes because the

machine’s memory was full
§ A programming error generated 100,000 extra votes in one Texas

county
§ A programming error caused some candidates to receive votes

actually cast for other candidates.
§ Programmers or hackers rigging software to produce inaccurate

results.
§ Vulnerability to viruses

10Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§Stalled airports: Denver

§ The computer-controlled baggage-handling system, which cost $193
million, caused most of the delay
§ An automated system of carts traveling at up to 19 miles per hour on 22 miles of

underground tracks
§ Carts crashed into each other at track intersections.
§ The system misrouted, dumped, and flung luggage
§ A software error caused the routing of carts to waiting pens when they were

actually needed

§Main causes:
§ Time allowed for development was insufficient

§ The only other baggage system of comparable size was at Frankfurt Airport in
Germany and it took six years on development and two years testing and
debugging.

§ BAE Automated Systems, the company that built the Denver system, was
asked to do it in two years

§ Denver made significant changes in specifications after the project began:
originally it was designed for United, but Denver officials decided to expand it to
include the entire airport (14 times larger) 11

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§Abandoned systems
§Some flaws in systems are so extreme that the

systems are discarded after wasting millions, or
even billions, of dollars.
§ A large British food retailer spent more than $500

million on an automated supply management system;
it did not work

§ Ford Motor Company abandoned a $400 million
purchasing system

§ California and Washington state motor vehicle
departments each spent more than $40 million on
computer systems that never worked

12Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§15% of information technology projects are
abandoned before or soon after delivery as
“hopelessly inadequate”
§ Lack of clear, well-thought-out goals and

specifications
§Poor management and poor communication among

customers, designers, programmers, etc.
§ Institutional and political pressures that encourage

unrealistically low bids, low budget requests, and
underestimates of time requirements

§Use of very new technology, with unknown
reliability and problems

§Refusal to recognize or admit a project is in trouble
13Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§Legacy systems = out-of-date systems (hardware,

software, or peripheral equipment) still in use,
often with special interfaces, conversion software,
and other adaptations to make them interact with
more modern systems
§ These old systems are "Reliable but inflexible"
§ Expensive to replace: the early adopters of computers were: bank, power

companies, airlines, governments
§ Little or no documentation

§After US Airways and America West merged, they
combined their reservations systems
§ most airline systems date from the 1960s and 1970s
§ The self-service check-in kiosks failed

§Merging different computer systems is extremely
tricky, and problems are common

14Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§ Legacy systems

§ Old hardware fails and replacement parts are hard to
find.

§ Old software often runs on newer hardware, but it is still
old software.

§ Programmers no longer learn the old programming
languages.

§ Old programs often had little or no documentation, and
the programmers who wrote the software or operated
the systems have left the company, retired, or died.

§ Limited computer memory led to obscure and terse
programming practices.

§ The systems grew gradually.
§ A complete redesign and development of a fully new,

modern system would be expensive.
§ It would require a major retraining project.
§ The conversion to the new system, requiring some

downtime, could also be very disruptive. 15
Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

System Failures
§Legacy systems
§Lesson: someone might be using your software 30

or 40 years from now.
§ It is important for flexibility, expansion, and

upgrades to document, document, document your
work.

16Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

What Goes Wrong?
§ The job they are doing is inherently difficult.

§ Computer systems interact with the real world
§ Automobiles, passenger airplanes, and jet fighters contain

millions of lines of computer code
§ Sometimes the job is done poorly

§ Inadequate attention to potential safety risks
§ Interaction with physical devices that do not work as expected
§ Incompatibility of software and hardware, or of application

software and the operating system
§ Not planning and designing for unexpected inputs or

circumstances
§ Confusing user interfaces
§ Insufficient testing
§ Reuse of software from another system without adequate checking
§ Data-entry errors
§ Inadequate training of users
§ Errors in interpreting results or output
§ Failure to keep information in databases up to date
§ Insufficient planning for failures; no backup systems or procedures

17Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

What Goes Wrong?
§Reuse of software: the Ariane 5 rocket and “No Fly”

lists
§Ariane 5 rocket ($500 million) veered off course and

was destroyed as a safety precaution
§ It reused software designed for the earlier,

successful Ariane 4
§This module did calculations related to velocity, but

the Ariane 5 traveled faster than the Ariane 4 after
takeoff.

§The calculations produced numbers bigger than
the program could handle (“overflow” errors),
causing the system to halt.

§ “No Fly” lists
§ TSA software checked only the first initial for first name

§ It is essential to reexamine the specifications and design of the software,
consider implications and risks for the new environment, and retest the
software for the new use.

18Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

8.2 CASE STUDY: THE THERAC-25

Therac-25 Radiation Overdoses
§ Massive overdoses of radiation were given; the machine

said no dose had been administered at all

§ Caused severe and painful injuries and the death of three
patients

§ Insufficient testing, bugs in the software that controlled
the machines, and an inadequate system of reporting and
investigating the accidents

§ Important to study to avoid repeating errors

§ Manufacturer, computer programmer, and
hospitals/clinics all have some responsibility

19Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Software and Design problems
§ Re-used software from older systems (Therac-6 and

Therac-20), unaware of bugs in previous software
§ Weaknesses in design of operator interface
§ Inadequate test plan
§ Bugs in software

§ Allowed beam to deploy when table not in proper
position
§ A flag variable indicated whether a specific device on the machine was in the

correct position. A zero value meant the device was ready; a nonzero value meant
it must be checked.

§ The flag variable was stored in one byte. After the 256th call to the routine, the
flag overflowed and showed a value of zero.

§ The solution is to set the flag variable to a fixed value, say 1, rather than
incrementing it, to indicate that the device needs checking.

§ Ignored changes and corrections operators made at
console

20Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Why So Many Incidents?
§ Overconfidence in software (that it cannot have errors)

§ The decision to eliminate the hardware safety mechanisms
§ In the first overdose incident, when the patient told the machine

operator that the machine had “burned” her, the operator told her
that was impossible

§ A camera in the treatment room and an intercom system enabled
the operator to monitor the treatment and communicate with the
patient
§ On the day of an accident at one facility, neither the

video monitor nor the intercom was functioning
§ The operator did not see or hear the patient try to get

up after an overdose
§ The patient received a second overdose before

getting to the door and pound on it
21Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Why So Many Incidents?
§ Hospitals had never seen such massive overdoses before, were

unsure of the cause

§ Manufacturer said the machine could not have caused the
overdoses and no other incidents had been reported (which
was untrue)

§ The manufacturer made changes to the turntable and claimed
they had improved safety after the second accident.
§ The changes did not correct any of the causes identified later.

§ Recommendations were made for further changes to enhance
safety; the manufacturer did not implement them.

§ The FDA declared the machine defective after the fifth
accident.

§ The sixth accident occurred while the FDA was negotiating
with the manufacturer on what changes were needed.

22Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Observations and Perspective
§Design and implementation errors usually occur in

complex systems
§The hospital physicist at one of the facilities where

the Therac-25 overdosed patients spent many hours
working with the machine to try to reproduce the
conditions under which the overdoses occurred.

§With little support or information from the
manufacturer, he was able to figure out the cause of
some of the malfunctions.

§The problems in the Therac-25 case were not minor
and suggest irresponsibility

§ Accidents occurred on other radiation treatment equipment
without computer controls:
§ Did not properly measure the radioactive drugs
§ Confused micro-curies and milli-curies

23Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Discussion Question

§ If you were a judge who had to assign
responsibility in this case, how much responsibility
would you assign to the programmer, the
manufacturer, and the hospital or clinic using the
machine?

24Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

8.3 INCREASING RELIABILITY AND SAFETY
Professional techniques
§ Many large, complex computer systems work extremely well

§ The New York Stock Exchange installed a $2 billion system with
hundreds of computers, 200 miles of fiber-optic cable, 8000
telephone circuits, and 300 data routers. The system handled the
sales without errors or delays

§ We rely on them daily.
§ Importance of good software engineering and professional

responsibility
§ How can we design, build, and operate systems that are likely to

function well?

§ To produce good systems, we must use good software
engineering techniques at all stages of development, including
specifications, design, implementation, documentation, and
testing

§ Testing
§ Include real world testing with real users

25Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Professional techniques
§High reliability organizations (HRO) are

organizations (business or government) that
operate in difficult environments, often with
complex technology, where failures can have
extreme consequences (for example, air traffic
control, nuclear power plants)

§High reliability organization principles
§ preoccupation with failure: always assume something

unexpected can go wrong—not just plan, design, and program for all
problems the team can foresee, but always being aware that they might
miss something

§ loose structure: it should be easy for a designer or programmer to
speak to people in other departments or higher up in the company
without going through rigid channels that discourage communication

26Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Safety-critical applications
§ Identify risks and protect against them

§ developers must “design in” safety from the start

§Convincing case for safety
§Avoid complacency
§Example: the night before the scheduled launch of

space shuttle Challenger, the engineers argued for a
delay
§ they knew the cold weather posed a severe threat to the shuttle
§ They could not prove absolutely that a system is safe, nor prove absolutely that

it will fail

§ A large piece of insulating foam dislodged and struck the wing of the
Columbia space shuttle as it launched
§ NASA knew this happened, but pieces of foam had dislodged and struck the

shuttle on other flights without causing a major problem

27Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Specifications

§Learn the needs of the client: understand how the
client will use the system
§ long planning stage allows for discovering and

modifying unrealistic goals
§ One company developed a successful financial

system that processes one trillion dollars in
transactions per day spent several years developing
specifications for the system, then only six months
programming, followed by carefully designed,
extensive testing

28Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

User interfaces and human factors

§User interfaces should:
§ provide clear instructions and error messages
§ be consistent
§ include appropriate checking of input to reduce major

system failures caused by typos or other errors a
person will likely make

§ The crash of American Airlines Flight 965 near Cali, Colombia
§ While approaching the airport, the pilot intended to lock the autopilot

onto the beacon, called Rozo, that would lead the plane to the airport
§ The pilot typed “R,” and the computer system displayed six beacons

beginning with “R.” Normally, the closest beacon is at the top of the list
§ The pilot selected it without checking carefully (it was Romeo, 100miles

away).

29Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

User interfaces and human factors

§The user needs feedback to understand what the
system is doing at any time.

§ Ground Proximity Warning system (GPWS) contains a digital map of
the world’s topography and gives warning 1 minute before a crash
§ The GWPS is likely responsible for preventing crashes in several incidents

in which pilots incorrectly set an altimeter, attempted to land with poor
visibility, mistook building lights for airport lights

§ No commercial U.S. airliner has crashed into a mountain since the GPWS
was implemented

§ The system should behave as an experienced user
expects.

§ A workload that is too low can be dangerous.
§ An overworked operator is more likely to make mistakes.
§ However, a workload that is too low can lead to boredom, inattention, or lack

of awareness of the current status
30

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Redundancy and self-checking

§ Redundancy
§ Multiple computers capable of same task; if one fails,

another can do the job.

§ Voting redundancy
§ Software modules can check their own results—either

against a standard or by computing the same thing in
two different ways and then comparing to see if the two
results match

§ Three independent teams write modules for the same
purpose, in three different programming languages.

§ The modules run on three separate computers.
§ A fourth unit examines the outputs of the three modules

and chooses the result obtained by at least two out of
three 31

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Testing
§ Even small changes need thorough testing
§ Independent verification and validation (IV&V)

§ not the programmers nor the customer tests and
validation of the software

§ They act as “adversaries” and try to find flaws
§ It works for 2 reasons:

§ The people who designed and/or developed a system think the
system works.
§ They think they thought about potential problems and solved

them.
§ With the best of intentions, they tend to test for the problems

they have already considered.
§ The people who created the system may be reluctant to find

flaws in it.
§ External IV is not practical for all projects

§ Many companies have their own testing teams

32Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Testing

§Beta testing
§ it is near-final stage of testing
§A selected set of customers use a complete,

presumably well-tested system in their “real-
world” environment

§ It can detect device limitations and bugs that
designers, programmers, and testers missed.

§ It can also uncover confusing aspects of user
interfaces and problems that occur when
interfacing with other systems.

33Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

§ Traffic Collision Avoidance System (TCAS)
§ Computers in some airplanes prevent certain pilot

actions
§ According to the head of the Airline Pilots Association’s

safety committee: it is a great advance in safety,
§ Pilots of the Airbus 380 are trained to allow its autopilot

system to control the plane when a midair collision
threatens

§ Prevents pilots from doing something “stupid”
§ Some people object, arguing that the pilot should have

ultimate control in case unusual action is needed in an
emergency

34Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

§Criminal and civil penalties
§ Provide incentives to produce good systems, but

shouldn't inhibit innovation
§ Are important legal tools for increasing reliability and safety of computer

systems and accuracy of data in databases

§Examples:
§Therac-25 victims sued; they settled out of court.
§ Several people have won large judgments against

credit bureaus for incorrect data in credit reports
that caused havoc in their lives

35Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

§Regulation for safety-critical applications
§ Specific testing requirements and requirement for

approval by a government agency before a new
product can be sold.

§The FDA has regulated drugs and medical devices
for decades.
§ Companies must do extensive testing, provide huge

quantities of documentation, and get government approval
before they sell new drugs and some medical devices.

§Patients do not have the expertise to judge the
safety or reliability of a system

§Overly strict standards can inhibit progress, require
techniques behind the state of the art, and transfer
responsibility from the manufacturer to the
government.

36Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

§Professional licensing
§ Mandatory licensing of software development professionals
§ Laws require licenses for hundreds of trades and professions
§ Licensing requirements typically include specific training, the passing of

competency exams, ethical requirements, and continuing education
§ Requirements for specific degrees and training programs, as opposed to

learning on one’s own or on the job, tend to keep poorer people from
qualifying for licenses

§Taking responsibility
§ In some cases of computer errors, businesses

have an ethical policy of behaving responsibly
and paying for mistakes (without a lawsuit)
§ Intuit offered to pay interest and penalties that

resulted from errors in flawed income-tax programs

37Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

8.4 DEPENDENCE, RISK, AND PROGRESS
§ Are We Too Dependent on Computers?

§ Because of their usefulness and flexibility, computers,
cellphones, and similar devices are now virtually
everywhere
§ Many drivers would be lost if their navigation system failed
§ Some military jets cannot fly without the assistance of

computers.
§ In Holland, no one discovered the body of a reclusive,

elderly man who died in his apartment until six months
after his death
§ Many of the man’s bills, including rent and utilities,

were paid automatically.
§ His pension check went automatically to his bank

account
§ “All the relevant authorities assumed that he was still

alive.”
§ In a similar case, an elderly, reclusive woman died in her

home.
§ Within two days, not six months, the mailman noticed

that she had not taken in her mail
§ They are not the only dependence

§ Electricity: Computers make decisions; electricity
does not 38

Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

DEPENDENCE, RISK, AND PROGRESS
§Risk and Progress

§ We trust older technologies
§ Many new technologies were not very safe when they

were first developed
§ We develop and improve new technologies in response

to accidents and disasters
§ We should compare the risks of using computers with

the risks of other methods and the benefits to be gained
§ The death rate from motor vehicle accidents in the

United States declined almost 80% from 1965 to 2010
(from 5.30 per 100 million vehicle miles traveled to
1.13 per 100 million vehicle miles traveled).

§ The risk of dying in an on-the-job accident dropped
from 39 among 100,000 workers (in 1934) to 5 in
100,000 in 2008

§ Why?

39Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

Discussion Questions

§Do you believe we are too dependent on
computers? Why or why not?

§ In what ways are we safer due to new
technologies?

40Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

§ There is a “learning curve” for new technologies
§ Much is known about how to design, develop, and use

complex systems well and safely. Ethical professionals
learn and follow these methods.

§ Perfection is not an option. The complexity of computer
systems makes errors, oversights, and failures likely
§ This does not mean that we should excuse or ignore computer

errors
§ Computer system developers and other professionals responsible

for planning and choosing systems must assess risks carefully and
honestly, include safety protections, and make appropriate plans
for shutdown of a system when it fails, for backup systems where
appropriate, and for recovery

§ Knowing that one will be liable for the damages one causes is
strong incentive to find improvements and increase safety

41Shebuti Rayana (CS, Stony Brook), (c) Paul Fodor and Pearson

