Type Analysis

Is an operator applied to an “incompatible” operand?
Type checking:

- **Static**: Check for type compatibility at compile time
- **Dynamic**: Check for type compatibility at run time

Type analysis phase also used to resolve fields in a structure:

Example: `list.element`

Type Checking vs. Type Inference

- A **Type Checker** only *verifies* that the given declarations are consistent with their use.
 Examples: type checkers for Pascal, C.

- A **Type Inference** system *generates* consistent type declarations from information implicit in the program.
 Examples: Type inference in SML, Scheme.

Given \(y = 3.1415 \times x \times x \), we can **infer** that \(y \) is a float.
Why Static Type Checking?

- Catch errors at compile time instead of run time.
- Determine which operators to apply.
 - Example: In \(x + y \), “+” is integer addition if \(x \) and \(y \) are both integers.
- Recognize when to convert from one representation to another (Type Coercion).
 - Example: In \(x + y \), if \(x \) is a float while \(y \) is an integer, convert \(y \) to a float value before adding.

Type Checking: An Example

\[
E \rightarrow \text{int_const} \quad \{ \ \text{E.type = int;} \ \}
\]
\[
E \rightarrow \text{float_const} \quad \{ \ \text{E.type = float;} \ \}
\]
\[
E \rightarrow E_1 + E_2 \quad \{
\quad \text{if } E_1.\text{type} == E_2.\text{type} == \text{int}
\quad \quad \ E.\text{type} = \text{int};
\quad \text{else}
\quad \quad \ E.\text{type} = \text{float};
\quad \}
\]
Type Checking: Another Example

\[
E \rightarrow \text{int_const} \quad \{ \ E.\text{type} = \text{int}; \ \}
\]
\[
E \rightarrow \text{float_const} \quad \{ \ E.\text{type} = \text{float}; \ \}
\]
\[
E \rightarrow \text{id} \quad \{ \ E.\text{type} = \text{sym_lookup(id.entry, type);} \ \}
\]
\[
E \rightarrow E_1 + E_2
\]
\[
\begin{align*}
&\text{if } (E_1.\text{type} \not\in \{\text{int, float}\}) \ \text{OR} \\
&\quad (E_2.\text{type} \not\in \{\text{int, float}\}) \\
&\quad E.\text{type} = \text{error}; \\
&\text{else if } E_1.\text{type} == E_2.\text{type} == \text{int} \\
&\quad E.\text{type} = \text{int}; \\
&\text{else} \\
&\quad E.\text{type} = \text{float}; \\
\end{align*}
\]

Types

- **Base types**: atomic types with no internal structure. Examples: `int`, `char`.
- **Structured types**: Types that combine (collect together) elements of other types.
 - **Arrays**: Characterized by **dimensions**, **index range** in each dimension, and type of elements.
 - **Records**: (structs and unions) Characterized by **fields** in the record and their types.
Type Expressions

Language to define types.

\[
\text{Type} \quad \rightarrow \quad \text{int} \mid \text{float} \mid \text{char} \ldots \\
\quad \mid \text{void} \\
\quad \mid \text{error} \\
\quad \mid \text{name} \\
\quad \mid \text{array}(\text{Type}) \\
\quad \mid \text{record}((\text{name}, \text{Type})*) \\
\quad \mid \text{pointer}(\text{Type}) \\
\quad \mid \text{tuple}(\text{(Type)*}) \\
\quad \mid \text{arrow}(\text{Type, Type})
\]

Examples of Type Expressions

- float xform[3][3];
 xform ∈ array(array(float))
- char *string;
 string ∈ pointer(char)
- struct list { int element; struct list *next; } l;
 list ≡ record((element, int), (next, pointer(list)))
 l ∈ list
- int max(int, int);
 max ∈ arrow(tuple(int, int), int)
Type Checking with Type Expressions

\[E \rightarrow E_1[E_2] \{ \text{if } E_1.type == \text{array}(T) \text{ AND } E_2.type == \text{int} \]
\[\quad E.type = T \]
\[\text{else} \]
\[\quad E.type = \text{error} \} \]

\[E \rightarrow *E_1 \{ \text{if } E_1.type == \text{pointer}(T) \}
\[\quad E.type = T \]
\[\text{else} \]
\[\quad E.type = \text{error} \} \]

\[E \rightarrow &E_1 \{ E.type = \text{pointer}(E_1.type) \} \]

Functions and Operators

Functions and Operators have Arrow types.

- \textbf{max}: \textit{int} \times \textit{int} \rightarrow \textit{int}
- \textbf{sort}: \textit{numlist} \rightarrow \textit{numlist}

Functions and operators are applied to operands.

- \textbf{max}(x, y):

\[
\begin{align*}
\text{max} & : \textit{int} \times \textit{int} \rightarrow \textit{int} \\
x & : \textit{int} \\
y & : \textit{int} \\
(x, y) & : \textit{int} \times \textit{int} \\
\text{max}(x, y) & : \textit{int}
\end{align*}
\]
Function Application

\[
E \rightarrow E_1 E_2 \quad \{ \text{if } E_1.\text{type} \equiv \text{arrow}(S, T) \text{ AND } E_2.\text{type} \equiv S \text{ then } E.\text{type} = T \text{ else } E.\text{type} = \text{error } \}
\]

\[
E \rightarrow (E_1, E_2) \quad \{ E.\text{type} = \text{tuple}(E_1.\text{type}, E_2.\text{type}) \}
\]

Type Equivalence

When are two types “equal”?

\[
\text{type Vector} = \text{array}[1..10] \text{ of real}; \\
\text{type Weights} = \text{array}[1..10] \text{ of real};
\]

\[
\text{var } x, y : \text{Vector}; \\
\text{z: Weight;}
\]

- **Name Equivalence:** When they have the same name.
 x and y have same type, but z has different type.
- **Structural Equivalence:** When they have the same structure.
 x, y and z have same type.
Structural Equivalence

$S \equiv T$ iff:

- S and T are the same **basic type**;
- $S = \text{array}(S_1)$, $T = \text{array}(T_1)$, and $S_1 \equiv T_1$.
- $S = \text{pointer}(S_1)$, $T = \text{pointer}(T_1)$, and $S_1 \equiv T_1$.
- $S = \text{tuple}(S_1, S_2)$, $T = \text{tuple}(T_1, T_2)$, and $S_1 \equiv T_1$ and $S_2 \equiv T_2$.
- $S = \text{arrow}(S_1, S_2)$, $T = \text{arrow}(T_1, T_2)$, and $S_1 \equiv T_1$ and $S_2 \equiv T_2$.

Subtyping

Object-oriented languages permit subtyping.

```java
class Rectangle {
    private int x, y;
    int area() { ... }
}

class Square extends Rectangle {
    ...
}
```

Square is a subclass of Rectangle.

Since all methods on Rectangle are inherited by Square (unless explicitly overridden)

Square is a *subtype* of Rectangle.
Inheritance

class Circle {
 float x, y; // center
 float r; // radius
 float area() {
 return 3.1415 * r * r;
 }
}

class ColoredCircle extends Circle {
 Color c;
}

class Test{
 static main() {
 ColoredCircle t;
 ... t.area() ...
 }
}

Resolving Names

What entity is represented by \(t \text{.} \text{area}() \)?
(assume no overloading)

- Determine the type of \(t \).
 \(t \) has to be of type \text{user}(c).
- If \(c \) has a method of name \text{area}, we are done.
 Otherwise, if the superclass of \(c \) has a method of name \text{area}, we are done.
 Otherwise, if the superclass of superclass of \(c \)...

\(\implies \) Determine the nearest \textit{superclass} of class \(c \) that has a method with name \text{area}.
Overloading

```java
class Rectangle {
    int x, y; // top lh corner
    int l, w; // length and width

    Rectangle move() {
        x = x + 5;  y = y + 5;
        return this;
    }

    Rectangle move(int dx, int dy) {
        x = x + dx;  y = y + dy;
        return this;
    }
}
```

Resolving Overloaded Names

What entity is represented by `move` in `r.move(3, 10)`?

- Determine the type of `r`.
 - `r` has to be of type `user(c)`.
- Determine the nearest **superclass** of class `c` that has a method with name `move` such that `move` is a method that takes two `int` parameters.
Structural Subtyping

\(S \subseteq T \) iff:

- \(S \) and \(T \) are the same basic type.
- \(S = \text{user}(\text{type}_1) \), \(T = \text{user}(\text{type}_2) \) and \(\text{type}_1 \subseteq \text{type}_2 \).
- \(S = \text{array}(S_1) \), \(T = \text{array}(T_1) \) and \(S_1 \subseteq T_1 \);
- \(S = \text{pointer}(S_1) \), \(T = \text{pointer}(T_1) \) and \(S_1 \subseteq T_1 \);
- \(S = \text{tuple}(S_1, S_2) \), \(T = \text{tuple}(T_1, T_2) \), and \(S_1 \subseteq T_1 \) and \(S_2 \subseteq T_2 \);
- \(S = \text{arrow}(S_1, S_2) \), \(T = \text{arrow}(T_1, T_2) \), and \(S_1 \subseteq T_1 \) and \(T_2 \equiv S_2 \).

Inheritance and Overloading

What entity is represented by \(f \) in \(E. f(a_1, a_2, \ldots, a_n) \)?

- Let the type of \(E \) be \(\text{user}(c) \).
- \(f \) is the method in the nearest superclass of class \(c \) such that type of \(f \) is a supertype of \(\text{type}(a_1) \times \cdots \text{type}(a_1) \rightarrow \perp \).
Abstract objects and Concrete Representations

Abstract classes declare methods, but do not define them.

Example:

- closed_graphical declares “area” method, but cannot define the method.
- The different “area” methods are defined when the object's representations are concrete: in rectangle, ellipse, etc.

When “area” method is applied to an object of class closed_graphical, we method to be called is the one defined in rectangle, triangle, ellipse, etc.

... which can be resolved only at run-time!
Decaf implements a small part of the type system for an OO language.

- **Subtype rule:** Wherever an object of type \(t \) is required (as a parameter of a method, return value, or rhs of assignments), object of any subtype \(s \) of \(t \) can be used.

- **Method Selection rule:** If class \(B \) inherits from class \(A \) and overwrites method \(m \), then for any \(B \) object \(b \), method \(m \) of \(B \) must be used, even if \(b \) was used as an \(A \) object.

```java
class A {
    int m() { ... }
}
class B extends A {
    int m() { ... }
}
class C{
    int f(B b) {
        A a;
        a = b;
        ... a.m() ...
    }
```
Dynamic Binding rule: A method of object obj, which can be potentially overwritten in a subclass has to be bound dynamically if the compiler cannot determine the runtime type of obj.