1. [10 points] Is C_4 an $LL(1)$ grammar? Justify.

2. [5 points] Compute FOLLOW of S.

3. [5 points] Compute FIRST of S.

4. [Total 20 points] Consider the following grammar G: If the other characters unchanged. You need not translate the first sentence in the file. Write a (Perl) script to translate an input file to output a file containing the translated text. Assume that library functions translate lower-case to upper-case (and return non-alphabetic characters unaltered). Also assume that there is a library function that returns one of more white space characters (tabs or newlines). Write a (Perl) script to implement Capitalize. Do not write a complete program. Assume that every sentence ends with a period (.), and sentences may be separated by one or more white space characters (blanks, tabs or newlines). A library function that translates lower-case to upper-case (and returns non-alphabetic characters unaltered). Also assume that there is a library function that returns one of more white space characters (tabs or newlines). Write a (Perl) script to implement Capitalize. Do not write a complete program. Assume that every sentence ends with a period (.), and sentences may be separated by one or more white space characters (blanks, tabs or newlines). A library function that translates lower-case to upper-case (and returns non-alphabetic characters unaltered). Also assume that there is a library function that returns one of more white space characters (tabs or newlines).

2. [Total 10 points] Let L_2 be the set of all bit strings (i.e., strings over alphabet $\{0, 1\}$) that are divisible by 4. Give an NFA that recognizes strings in L_2.

3. [Total 20 points] We want to write a script that recognizes that copies a text file from stdin to stdout, replacing every lowercase letter at the beginning of a sentence with the corresponding uppercase letter. Write specifications to implement the script. DO NOT WRITE A PROGRAM.

3. [Total 20 points] Consider the following grammar G:

 $S \rightarrow S\text{aa} \mid S\text{ab} \mid \epsilon$

 a. [5 points] Compute FIRST of S.

 b. [5 points] Compute FOLLOW of S.

Consider the following grammar G:

\[
S \rightarrow \text{if Expr then } S \text{ else } S
\]

\[
S \rightarrow \text{Expr}
\]

\[
\text{Expr} \rightarrow \text{Expr} + \text{Expr}
\]

\[
\text{Expr} \rightarrow \text{Expr} \ast \text{Expr}
\]

\[
\text{Expr} \rightarrow \text{id}
\]

1. [10 points] Is G SLR(1)? Justify.
3. [10 points] Is G SLR(0)? Compute the collection of LR(0) sets of items for G.
4. [10 points] Construct the SLR(1) action table for G.
5. [10 points] Is G SLR(1)? If not, how can you modify G to get a grammar G' such that G and G' represent the same languages, where G' is SLR(1)?

END OF EXAM