
CSE 303 PRACTICE FINAL SOLUTIONS

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing
Machines) and Problems from Q1−Q4, Practice Q1−Q4, and Midterm
and Practice midterm. I will choose some of these problems for your FI-
NAL TEST.

THE FINAL TEST will also contain YES/NO questions from the questions
below, Q1 − Q4, Practice quizzes and Midterm and Practice Midterm.
There will be more questions from the second part of the semester then
from the first.

PART 1: Yes/No Questions Circle the correct answer. Write ONE-SENTENCE
justification.

1. There is a set A and an equivalence relation defined on A that is an
order relation with 2 Maximal elements.
Justify: A = {a, b}, R = ” = ”

y

2. (ab ∪ a∗b)∗ is a regular language.
Justify: this is a regular expression

n

3. Let Σ = φ, there is L 6= φ over Σ.
Justify: ∅∗ = {e} and L = {e} ⊆ Σ∗

y

4. A is uncountable iff | A | = c (continuum).
Justify: 2R, R real numbers, is uncountable and |2R| > c

n

5. There are uncountably many languages over Σ = {a}.
Justify: |{a}∗| = ℵ0 and |2{a}∗ | = c and any set of cardinality c is
uncountable.

y

6. Let RE be a set of regular expressions. L ⊆ Σ∗ is regular iff L =
L(r), r ∈ RE.
Justify: definition

y

7. L∗ = {w ∈ Σ∗ : ∃q∈F (s, w) `∗M (q, e)}.
Justify: this is definition of L(M), not L∗

n

1

8. (a∗b ∪ φ∗) is a regular expression.
Justify: definition

y

9. {a}∗{b} ∪ {ab} is a regular language
Justify: it is a union of two regular languages, and hence is regular

y

10. Let L be a language defined by (a∗b∪ab), i.e (shorthand) L = a∗b∪ab.
Then L ⊆ {a, b}∗.
Justify: definition

y

11. Σ = {a}, there are c (continuum) languages over Σ.
Justify: |2{a}∗ | = c

y

12. L∗ = L+ − {e}.
Justify: only when e 6∈ L

y

13. L∗ = {w1 . . . wn, wi ∈ L, i = 1, . . . , n}.
Justify: i = 0, 1, . . . , n}

n

14. For any languages L1, L2, L3 ⊆ Σ∗L1,∪(L2∩L3) = (L1∪L2)∩ (L1∪
L3).
Justify: languages are sets

y

15. For any languages L1, L2 ⊆ Σ∗, if L1 ⊆ L2, then (L1 ∪ L2)∗ = L∗2.
Justify: languages are sets, so (L1 ∪ L2) = L∗2

y

16. ((φ∗ ∩ a) ∪ (φ ∪ b∗)) ∩ φ∗ represents a language L = {e}.
Justify: (({e} ∩ {a}) ∪ {b}∗) ∩ {e} = {b}∗ ∩ {e} = {e}

y

17. L = ((φ∗ ∪ b) ∩ (b∗ ∪ φ)) (shorthand) has only one element.
Justify: {e, b} ∩ {b}∗ = {e, b}

n

18. L(M) = {w ∈ Σ∗ : (q, w) `∗M (s, e)}.
Justify: only when q ∈ F

n

19. If M is a FA, then L(M) 6= φ.
Justify: take M with Σ = φ

n

20. If M is a nondeterministic FA, then L(M) 6= φ.
Justify: take M with Σ = φ or F = φ

n

2

21. L(M1) = L(M2) iff M1 and M2 are finite automata.
Justify: take as M1 any automata such that L(M1) 6= φ and M2

such that L(M2) = φ
n

22. A language is regular iff L = L(M) and M is a deterministic automa-
ton.
Justify: M is a finite automata

n

23. If L is regular, then there is a nondeterministic M , such that L =
L(M).
Justify: a finite automata

n

24. Any finite language is CF.
Justify: any finite language is regular and RL ⊂ CFL

y

25. Intersection of any two regular languages is CF language.
Justify: Regular languages are closed under intersection and RL ⊂
CFL

y

26. Union of a regular and a CF language is a CF language.
Justify: RL ⊆ CFL and FCL are closed under union

y

27. L1 is regular, L2 is CF, L1, L2 ⊆ Σ∗, then L1 ∩ L2 ⊆ Σ∗ is CF.
Justify: theorem

y

28. If L is regular, there is a PDA M such that L = L(M).
Justify: FA is a PDA operating on an empty stock

y

29. If L is regular, there is a CF grammar G, such that L = L(G).
Justify: RL ⊆ CFL

y

30. L = {anbncn : n ≥ 0} is CF.
Justify: is not CF, as proved by Pumping Lemma for CF languages

n

31. L = {anbn : n ≥ 0} is CF.
Justify: L = L(G) for G with R = {S → aSb|e}

y

32. Let Σ = {a}, then for any w ∈ Σ∗, wRw ∈ Σ∗.
Justify: aR = a and wR = w for w ∈ {a}∗

y

33. A → Ax,A ∈ V, x ∈ Σ∗ is a rule of a regular grammar.
Justify: this is a rule of a left-linear grammar and we defined regular

3

grammar as a right-linear
n

34. Regular grammar has only rules A → xA,A → x, x ∈ Σ∗, A ∈ V −Σ.
Justify: not only, A → xB for B 6= A is also a rule of a regular
grammar

n
35. Let G = ({S, (,)}, {(,)}, R, S) for R = {S → SS | (S)}. L(G) is

regular.
Justify: L(G) = ∅ and hence regular

y
36. The grammar with rules S → AB, B → b | bB, A → e | aAb generates

a language L = {akbj : k < j}.
Justify: the rule A → e | aAb produces the same amount of a’s and
b’s, the rule B → bB adds only b’s.
More formally, let’s look at the derivations

S ⇒ AB ⇒ ⇒ anbnB ⇒ ... ⇒ anbnbkB ⇒ anbnbk

S ⇒ AB ⇒ ⇒ anbnB ⇒ anbnb

we get anbn+k ∈ L(G) and n < n + k, and anbn+1 ∈ L(G) and
n < n + 1 y

37. L = {w ∈ {a, b}∗ : w = wR} is regular.
Justify: we use Pumping Lemma; while pumping the string akbak

with y containing only a′s we get that xy2z 6∈ L
n

38. We can always show that L is regular using Pumping Lemma.
Justify: we use Pumping Lemma to prove (if possible) that L is not
regular

n
39. ((p, e, β), (q, γ)) ∈ ∆ means: read nothing, move from p to q

Justify: and replace γ by β on the top of the stack
n

40. L = {anbmcn : n,m ∈ N} is CF.
Justify: when n = m we get L = {anbncn : n ∈ N} that is not CF

n
41. If L is regular, then there is a CF grammar G, such that L = L(G).

Justify: RL ⊆ CF
y

42. There is countably many non CF languages over Σ 6= φ
Justify: contradicts the fact that |Σ∗| = c, i.e. is uncountable

n
43. Every subset of a regular language is a language.

Justify: subset of a set is a set
y

4

44. A parse tree is always finite.
Justify: derivations are finite

y

45. Any regular language is accepted by some PD automata.
Justify: RL ≡ FA, FA ⊆ PDA

y

46. Class of context-free languages is closed under intersection.
Justify: L1 = {anbncm, n, m ≥ 0} is CF, L1 = {ambncn, n, m ≥ 0}
is CF, but L1 ∩ L2 = {anbncn, n ≥ 0} is not CF

n

47. There is countably many non-regular languages.
Justify: contradicts the fact that |Σ∗| = c, i.e. is uncountable

n

48. Every subset of a regular language is a regular language.
Justify:L = {anbn : n ≥ 0} ⊆ a∗b∗ and L is not regular

n

49. A CF language is a regular language.
Justify: L = {anbn : n ≥ 0} is CF and not regular

n

50. Class of regular languages is closed under intersection.
Justify: theorem

y

51. A regular language is a CF language.
Justify: Regular grammar is a special case of a context-free grammar

y

52. Every subset of a regular language is a regular language.
Justify: L1 = anbn is a non-regular subset of a regular language
L2 = a∗b∗. n

53. Any regular language is accepted by some PD automata.
Justify: Any regular language is accepted by a finite automata, and
a finite automaton is a PD automaton (that never operates on the
stock). y

54. A parse tree is always finite.
Justify: Any derivation of w in a CF grammar is finite. y

55. Parse trees are equivalence classes.
Justify: represent equivalence classes. n

56. For all languages, all grammars are ambiguous.
Justify: programming languages are never inherently ambiguous. n

57. A CF grammar G is called ambiguous if there is w ∈ L(G) with at
least two distinct parse trees.
Justify: definition y

5

58. A CF language L is inherently ambiguous iff all context-free gram-
mars G, such that L(G) = L are ambiguous.
Justify: definition y

59. Programming languages are sometimes inherently ambiguous.
Justify: never n

60. The largest number of symbols on the right-hand side of any rule of
a CF grammar G is called called a fanout and denoted by φ(G).
Justify: definition y

61. The Pumping Lemma for CF languages uses the notion of the fanout.
Justify: condition on the length of w ∈ L y

62. Turing Machines are as powerful as today’s computers.
Justify: thesis y

63. It is proved that everything computable (algorithm) is computable
by a Turing Machine and vice versa.
Justify: this is Church - Turing Hypothesis, not a theorem

n

64. Church’s Thesis says that Turing Machines are the most powerful.
Justify: We adopt a Turing Machine that halts on all inputs as a
formal notion of ”an algorithm”.

n

65. Turing Machines can read and write.
Justify: by definition y

66. A configuration of a Turing machine M = (K, Σ, δ, s, H) is any el-
ement of a set K × Σ∗ × (Σ∗(Σ − {#}) ∪ {e}), where # denotes a
blanc symbol.
Justify: a configuration is an element of a set K ×BΣ∗ × (Σ∗(Σ−
{#}) ∪ {e}) n

67. A computation of a Turing machine can start at any position of
w ∈ Σ. Justify: by definition y

68. A computation of a Turing machine can start at any state.
Justify: definition y

69. In Turing machines, words w ∈ Σ∗ can’t contain blanc symbols.
Justify: Σ contains the blanc symbol n

70. A Turing machine M decides a language L ⊆ Σ∗, if for any word
w ∈ Σ∗ the following is true.
If w ∈ L, then M accepts w; and if w 6∈ L then M rejects w.
Justify: any word w ∈ Σ0

∗, for Σ0 = Σ− {#} n

PART 2: PROBLEMS

6

QUESTION 1 Let Σ be any alphabet, L1, L2 two languages over Σ such that
e ∈ L1 and e ∈ L2. Show that

(L1Σ?L2)? = Σ?

Solution : By definition, L1 ⊆ Σ?, L2 ⊆ Σ? and Σ? ⊆ Σ?. Hence

(L1Σ?L2)? ⊆ Σ?.

We have to show that also

Σ? ⊆ (L1Σ?L2)?.

Let w ∈ Σ? we have that also w ∈ (L1Σ?L2)? because w = ewe and e ∈ L1

and e ∈ L2.

QUESTION 2 Use book or lecture definition (specify which are you using) to
construct a non-deterministic finite automaton M , such that

L(M) = (ab)∗(ba)∗.

Draw a state diagram and specify all components K, Σ, ∆, s, F of M . Jus-
tify your construction by listing some strings accepted by the state dia-
gram.

Solution 1 We use the lecture definition.

Components of M are: Σ = {a, b}, K = {q0, q1}, s = q0, F = {q0, q1}.
We define ∆ as follows.
∆ = {(q0, ab, q0), (q0, e, q1), (q1, ba, q1)}.

Strings accepted : ab, abab, abba, ababba, ababbaba,

Solution 2 We use the book definition.

Components of M are: Σ = {a, b}, K = {q0, q1, q2, q3}, s = q0, F = {q2}.
We define ∆ as follows.
∆ = {(q0, a, q1), (q1, b, q0), (q0, e, q2), (q2, b, q3), (q3, a, q2)}.

Strings accepted : ab, abab, abba, ababba, ababbaba,

QUESTION 3 Given a Regular grammar G = (V, Σ, R, S), where

V = {a, b, S,A}, Σ = {a, b},
R = {S → aS |A |e, A → abA |a |b}.

7

1. Construct a finite automaton M , such that L(G) = L(M).

Solution We construct a non-deterministic finite automata

M = (K, Σ, ∆, s, F)

as follows:

K = (V − Σ) ∪ {f}, Σ = Σ, s = S, F = {f},

∆ = {(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)}

2. Trace a transitions of M that lead to the acceptance of the string aaaababa,
and compare with a derivation of the same string in G.

Solution

The accepting computation is:

(S, aaaababa) `M (S, aaababa) `M (S, aababa) `M (S, ababa) `M (A, ababa)

`M (A, aba) `M (A, a) `M (f, e)

G derivation is:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaA ⇒ aaaabA ⇒ aaaababA ⇒ aaaababa

QUESTION 4 Construct a context-free grammar G such that

L(G) = {w ∈ {a, b}∗ : w = wR}.

Justify your answer.

Solution G = (V, Σ, R, S), where

V = {a, b, S}, Σ = {a, b},

R = {S → aSa |bSb | a | b | e}.

Derivation example: S ⇒ aSa ⇒ abSba ⇒ ababa
ababaR = ((ab)a(ba))R = (ba)RaR(ab)R = ababa.

Observation 1 We proved in class that for any x, y ∈ Σ∗, (xy)R = yRxR.
From this we have that

(xyz)R = ((xy)z)R = zR(xy)R = zRyRxR

8

Grammar correctness justification: observe that the rules S → aSa |bSb | e
generate the language L1 = {wwR : w ∈ Σ∗}. With additional rules
S → a | b we get hence the language L = L1∪{wawR : w ∈ Σ∗}∪{wbwR :
w ∈ Σ∗}. Now we are ready to prove that

L = L(G) = {w ∈ {a, b}∗ : w = wR}.

Proof Let w ∈ L, i.e. w = xxR or w = xaxR or w = xbxR. We show that in
each case w = wR as follows.

c1: wR = (xxR)R = (xR)RxR = xxR = w (used property: (xR)R = x).

c2: wR = (xaxR)R = (xR)RaRxR = xaxR = w (used Observation 1 and
properties: (xR)R = x and aR = a).

c3: wR = (xbxR)R = (xR)RbRxR = xbxR = w (used Observation 1 and
properties: (xR)R = x and bR = b).

QUESTION 5 Construct a pushdown automaton M such that

L(M) = {w ∈ {a, b}∗ : w = wR}

Solution 1 We define M as follows: M = (K, Σ, Γ,∆, s, F)

M components are

K = {s, f}, Σ = {a, b}, Γ = {a, b}, F = {f}

∆ = {((s, a, e), (s, a)), ((s, b, e), (s, b)), ((s, e, e), (f, e)), ((s, a, e), (f, a)),

((s, b, e), (f, b)), ((f, a, a), (f, e)), ((f, b, b), (f, e))}
Trace a transitions of M that lead to the acceptance of the string ababa.

Solution
S ababa e

S baba a

S aba ba

f ba ba

f a a

f e e

9

QUESTION 6 Construct a PDA M , such that

L(M) = {bna2n : n ≥ 0}.
Solution M = (K, Σ, Γ, ∆, s, F) for

K = {s, f}, Σ = {a, b}, Γ = {a}, s, F = {f},
∆ = {((s, b, e), (s, aa)), ((s, e, e), (f, e)), ((f, a, a), (f, e))}

Explain the construction. Write motivation.

Solution M operates as follows: ∆ pushes aa on the top of the stock while M
is reading b, switches to f (final state) non-deterministically; and pops a
while reading a (all in final state). M puts on the stock two a’s for each
b, and then remove all a’s from the stock comparing them with a’s in the
word while in the final state.

Trace a transitions of M that leads to the acceptance of the string bbaaaa.

Solution The accepting computation is:

(s, bbaaaa, e) `M (s, baaaa, aa) `M (s, aaaa, aaaa) `M (f, aaaa, aaaa)

`M (f, aaa, aaa) `M (f, aa, aa) `M (f, a, a) `M (f, e, e)

Solution 2 M = (K, Σ,Γ,∆, s, F) for

K = {s, f}, Σ = {a, b}, Γ = {b}, s, F = {f},
∆ = {((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, aa, b), (f, e))}

QUESTION 7 Use PUMPING LEMMA to prove that

L = {ww : w ∈ {a, b}∗}
in NOT regular. Consider ALL cases.

Solution Assume L is regular, then by PM Lemma there is k ≥ 0 such that
the Condition holds for all w ∈ L. Take w = akbakb. Observe that |w| =
2k + 2 ≥ k, and so |w| ≥ k. So there are x, y, z ∈ Σ∗, such that y 6= e,
w = xyz and |xy| ≤ k.

Observe that y can’t contain first (or the second) b. If y = b then x = ak

and |xy| = k + 1 > k. Argument for the second b, and any location
between first and the second b is the same. It proves that x = aj , y =
ai, z = ambakb, for i > 0, m ≥ 0, j ≥ 0 and j + i + m = k.

BY PM Lemma xynz ∈ L for all n ≥ 0. Consider xy2z = aja2iambakb.
Observe that xy2z ∈ L iff j + 2i + m = k. On the other hand we had that
j + i + m = k, and it gives 2i = i. This contradiction proves that L is not
regular.

10

Question 8 Use Pumping Lemma to prove that

L = {an2
: n ≥ 0}}

is not CF.

Solution look at the solutions to hmk 4.

QUESTION 9 Here is the definition:

Let L ⊆ Σ∗. For any x, y ∈ Σ∗ we define an equivalence relation on Σ∗ as
follows.

x ≈L y iff ∀z ∈ Σ∗(xz ∈ L ⇔ yz ∈ L).

Let now
L = (aab ∪ ab)∗.

FIND all equivalence classes of x ≈L y.

Write all definitions and show work.

Solution We evaluate the equivalence classes as follows.

[e] = {y ∈ Σ∗ : ∀z ∈ Σ∗(z ∈ L ⇔ yz ∈ L)} = L.

Observe that the main operator of L construction is ∗, hence yz ∈ L iff
x, y ∈ L.

[a] = {y ∈ Σ∗ : ∀z ∈ Σ∗(az ∈ L ⇔ yz ∈ L)} = La.

Observe that az ∈ L iff z ∈ bL (z begins with b), or z ∈ aL (z begins with
a). Let z ∈ bL, hence when yz ∈ L, we get that y ∈ Laa or y ∈ La (y ends
with aa, or a). But the case y ∈ Laa is impossible, as for y = aa(e ∈ L)
we get ∀z ∈ Σ∗(az ∈ L ⇔ aaz ∈ L) what is not true for z = ab; aab ∈ L
and aaab 6∈ L.

Let now z ∈ aL we get yz ∈ L iff y ∈ La.

[aa] = {y ∈ Σ∗ : ∀z ∈ Σ∗(aaz ∈ L ⇔ yz ∈ L)} = Laa.

Observe that aaz ∈ L iff z ∈ bL (z begins with b), and hence yz ∈ L
iff y ∈ Laa or y ∈ La (y ends with aa, or a). But the case y ∈ La is
impossible, as for y = a we get ∀z ∈ Σ∗(aaz ∈ L ⇔ az ∈ L) what is not
true for z = ab.

Now observe that bb 6∈ L, aaa /∈ L and L can’t contain any word in which
bb or aaa appear. So we evaluate, as the next step [bb] and [aa].

[aaa] = {y ∈ Σ∗ : ∀z ∈ Σ∗(aaaz ∈ L ⇔ yz ∈ L)}

11

[bb] = {y ∈ Σ∗ : ∀z ∈ Σ∗(bbz ∈ L ⇔ yz ∈ L)}

Observe that the statements: aaaz ∈ L, bbz ∈ L are false for all z and
hence we are looking for y ∈ Σ∗ such that the statement yz ∈ L is false
for all z ∈ Σ∗. So y is any word from Σ∗ that must contain at least one
appearance of aaa or bb. It means that y ∈ Σ∗(aaa ∪ bb)Σ∗ and

[aaa] = [bb] = Σ∗(aaa ∪ bb)Σ∗.

We have hence 4 equivalence classes:

L, La, Laa, Σ∗(aaa ∪ bb)Σ∗.

Question 10 Show that the following language L in NOT CF.

L = {w ∈ {a, b, c}∗ : all numbers of accurences of a, b, c in w are different}.

Solution First we represent L as L = L1 ∪ L2 ∪ L3, for L1 = {w ∈ {a, b, c}∗ :
#a 6= #b in w} - CF;
L2 = {w ∈ {a, b, c}∗ : #b 6= #c in w} - CF;
L3 = {w ∈ {a, b, c}∗ : #c 6= #a in w} - CF;
and use the closure of CF languages under union.

12

