CSE 303 PRACTICE FINAL SOLUTIONS

- FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing Machines) and Problems from Q1 Q4, Practice Q1 Q4, and Midterm and Practice midterm. I will choose some of these problems for your FINAL TEST.
- **THE FINAL TEST** will also contain YES/NO questions from the questions below, Q1 Q4, Practice quizzes and Midterm and Practice Midterm. There will be more questions from the second part of the semester then from the first.
- **PART 1: Yes/No Questions** Circle the correct answer. Write ONE-SENTENCE justification.
 - There is a set A and an equivalence relation defined on A that is an order relation with 2 Maximal elements.
 Justify: A = {a,b}, R = " = "
 - 2. $(ab \cup a^*b)^*$ is a regular language. Justify: this is a regular expression
 - 3. Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ . **Justify**: $\emptyset^* = \{e\}$ and $L = \{e\} \subseteq \Sigma^*$
 - 4. A is uncountable iff $|A| = \mathbf{c}$ (continuum). Justify: 2^{R} , R real numbers, is uncountable and $|2^{R}| > \mathbf{c}$
 - 5. There are uncountably many languages over $\Sigma = \{a\}$. **Justify**: $|\{a\}^*| = \aleph_0$ and $|2^{\{a\}^*}| = \mathbf{c}$ and any set of cardinality \mathbf{c} is uncountable.
 - 6. Let RE be a set of regular expressions. $L \subseteq \Sigma^*$ is regular iff $L = L(r), r \in RE$. Justify: definition
 - 7. $L^* = \{ w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash^*_M (q, e) \}.$ Justify: this is definition of L(M), not L^*

 \mathbf{n}

у

У

У

у

 \mathbf{n}

 \mathbf{n}

8.	$(a^*b \cup \phi^*)$ is a regular expression. Justify : definition	
9.	$\{a\}^*\{b\} \cup \{ab\}$ is a regular language	У
10	Justify : it is a union of two regular languages, and hence is regular Let L be a language defined by $(a^*b \cup ab)$, i.e (shorthand) $L = a^*b \cup ab$.	У
10.	Then $L \subseteq \{a, b\}^*$. Justify: definition	
11.	$\Sigma = \{a\}$, there are c (continuum) languages over Σ . Justify: $ 2^{\{a\}^*} = \mathbf{c}$	У
12.	$L^* = L^+ - \{e\}.$	У
	Justify : only when $e \notin L$	У
13.	$L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}.$ Justify: $i = 0, 1, \dots, n\}$	n
14.	For any languages $L_1, L_2, L_3 \subseteq \Sigma^* L_1, \cup (L_2 \cap L_3) = (L_1 \cup L_2) \cap (L_1 \cup L_3).$	11
	Justify: languages are sets	У
15.	For any languages $L_1, L_2 \subseteq \Sigma^*$, if $L_1 \subseteq L_2$, then $(L_1 \cup L_2)^* = L_2^*$. Justify : languages are sets, so $(L_1 \cup L_2) = L_2^*$	V
16.	$((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^* \text{ represents a language } L = \{e\}.$ Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$	У
17.	$L = ((\phi^* \cup b) \cap (b^* \cup \phi))$ (shorthand) has only one element.	У
10	Justify : $\{e, b\} \cap \{b\}^* = \{e, b\}$	n
	$L(M) = \{ w \in \Sigma^* : (q, w) \vdash^*_M (s, e) \}.$ Justify : only when $q \in F$	n
19.	If M is a FA, then $L(M) \neq \phi$. Justify : take M with $\Sigma = \phi$	
20.	If M is a nondeterministic FA, then $L(M) \neq \phi$.	n
	Justify : take M with $\Sigma = \phi$ or $F = \phi$	n

21.	$L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata.	
	Justify : take as M_1 any automata such that $L(M_1) \neq \phi$ and M_2 such that $L(M_2) = \phi$	n
22.	A language is regular iff $L = L(M)$ and M is a deterministic automaton.	
	Justify : M is a finite automata	n
23.	If L is regular, then there is a nondeterministic M , such that $L = L(M)$. Justify: a finite automata	
0.4		n
24.	Any finite language is CF. Justify : any finite language is regular and $RL \subset CFL$	
25.	Intersection of any two regular languages is CF language.	У
_0.	Justify : Regular languages are closed under intersection and $RL \subset CFL$	
26.	Union of a regular and a CF language is a CF language.	У
	Justify : $RL \subseteq CFL$ and FCL are closed under union	17
27.	L_1 is regular, L_2 is CF, $L_1, L_2 \subseteq \Sigma^*$, then $L_1 \cap L_2 \subseteq \Sigma^*$ is CF. Justify : theorem	У
28	If L is regular, there is a PDA M such that $L = L(M)$.	У
20.	Justify: FA is a PDA operating on an empty stock	
29.	If L is regular, there is a CF grammar G, such that $L = L(G)$. Justify: $RL \subseteq CFL$	У
		У
30.	$L = \{a^n b^n c^n : n \ge 0\}$ is CF. Justify: is not CF, as proved by Pumping Lemma for CF languages	
21	$L = \{a^n b^n : n \ge 0\}$ is CF.	n
01.	Justify : $L = L(G)$ for G with $R = \{S \to aSb e\}$	
32.	Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*, w^R w \in \Sigma^*$.	У
	Justify : $a^R = a$ and $w^R = w$ for $w \in \{a\}^*$	v
33.	$A \to Ax, A \in V, x \in \Sigma^*$ is a rule of a regular grammar.	У
	Institut this is a mula of a left linear grammar and we defined regular	

Justify: this is a rule of a left-linear grammar and we defined regular

grammar as a right-linear

- 34. Regular grammar has only rules $A \to xA, A \to x, x \in \Sigma^*, A \in V \Sigma$. Justify: not only, $A \to xB$ for $B \neq A$ is also a rule of a regular grammar
- 35. Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \rightarrow SS \mid (S)\}$. L(G) is regular. Justify: $L(G) = \emptyset$ and hence regular
- 36. The grammar with rules S → AB, B → b | bB, A → e | aAb generates a language L = {a^kb^j : k < j}.
 Justify: the rule A → e | aAb produces the same amount of a's and b's, the rule B → bB adds only b's. More formally, let's look at the derivations

$$S \Rightarrow AB \Rightarrow \dots \Rightarrow a^{n}b^{n}B \Rightarrow \dots \Rightarrow a^{n}b^{n}b^{k}B \Rightarrow a^{n}b^{n}b^{k}$$
$$S \Rightarrow AB \Rightarrow \dots \Rightarrow a^{n}b^{n}B \Rightarrow a^{n}b^{n}b$$

we get $a^n b^{n+k} \in L(G)$ and n < n+k, and $a^n b^{n+1} \in L(G)$ and n < n+1 y

- 37. $L = \{w \in \{a, b\}^* : w = w^R\}$ is regular. **Justify**: we use Pumping Lemma; while pumping the string $a^k b a^k$ with y containing only a's we get that $xy^2z \notin L$
- 38. We can always show that L is regular using Pumping Lemma. Justify: we use Pumping Lemma to prove (if possible) that L is not regular
- 39. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace γ by β on the top of the stack
- 40. $L = \{a^n b^m c^n : n, m \in N\}$ is CF. Justify: when n = m we get $L = \{a^n b^n c^n : n \in N\}$ that is not CF
- 41. If L is regular, then there is a CF grammar G, such that L = L(G). Justify: $RL \subseteq CF$
- 42. There is countably many non CF languages over $\Sigma \neq \phi$ Justify: contradicts the fact that $|\Sigma^*| = \mathbf{c}$, i.e. is uncountable
- 43. Every subset of a regular language is a language. Justify: subset of a set is a set

у

 \mathbf{n}

у

n

 \mathbf{n}

у

 \mathbf{n}

 \mathbf{n}

n

 \mathbf{n}

44.	A parse tree is always finite. Justify: derivations are finite	
45	Any regular language is accepted by some PD automata.	У
10.	Justify : $RL \equiv FA, FA \subseteq PDA$	у
46.	Class of context-free languages is closed under intersection. Justify : $L_1 = \{a^n b^n c^m, n, m \ge 0\}$ is CF, $L_1 = \{a^m b^n c^n, n, m \ge 0\}$ is CF, but $L_1 \cap L_2 = \{a^n b^n c^n, n \ge 0\}$ is not CF	
47.	There is countably many non-regular languages. Justify : contradicts the fact that $ \Sigma^* = \mathbf{c}$, i.e. is uncountable	n n
48.	Every subset of a regular language is a regular language. $\mathbf{Justify}: L = \{a^n b^n : n \ge 0\} \subseteq a^* b^* \text{ and } L \text{ is not regular}$	
49.	A CF language is a regular language. Justify : $L = \{a^n b^n : n \ge 0\}$ is CF and not regular	n
50.	Class of regular languages is closed under intersection. Justify : theorem	n
51.	A regular language is a CF language. Justify: Regular grammar is a special case of a context-free grammar	У
52.	Every subset of a regular language is a regular language. Justify : $L_1 = a^n b^n$ is a non-regular subset of a regular language	У
53.	$L_2 = a^* b^*$. Any regular language is accepted by some PD automata.	n
	Justify : Any regular language is accepted by a finite automata, and a finite automaton is a PD automaton (that never operates on the stock).	У
54.	A parse tree is always finite. Justify : Any derivation of w in a CF grammar is finite.	у
55.	Parse trees are equivalence classes. Justify: represent equivalence classes.	n
56.	For all languages, all grammars are ambiguous. Justify: programming languages are never inherently ambiguous.	n
	For all languages, all grammars are ambiguous.	n

58.	A CF language L is inherently ambiguous iff all context-free grammars G , such that $L(G) = L$ are ambiguous. Justify: definition	У
59.	Programming languages are sometimes inherently ambiguous. $\mathbf{Justify}$: never	n
60.	The largest number of symbols on the right-hand side of any rule of a CF grammar G is called called a fanout and denoted by $\phi(G)$. Justify : definition	У
61.	The Pumping Lemma for CF languages uses the notion of the fanout. Justify : condition on the length of $w \in L$	у
62.	Turing Machines are as powerful as today's computers. Justify : thesis	у
63.	It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa. Justify: this is Church - Turing Hypothesis, not a theorem	
64.	Church's Thesis says that Turing Machines are the most powerful. Justify: We adopt a Turing Machine that halts on all inputs as a formal notion of "an algorithm".	n
65.	Turing Machines can read and write.	n
	Justify : by definition	У
66.	A configuration of a Turing machine $M = (K, \Sigma, \delta, s, H)$ is any element of a set $K \times \Sigma^* \times (\Sigma^*(\Sigma - \{\#\}) \cup \{e\})$, where $\#$ denotes a blanc symbol. Justify : a configuration is an element of a set $K \times \triangleright \Sigma^* \times (\Sigma^*(\Sigma - \{\#\}) \cup \{e\})$	n
67.	A computation of a Turing machine can start at any position of $w \in \Sigma$. Justify: by definition	у
68.	A computation of a Turing machine can start at any state. Justify : definition	у
69.	In Turing machines, words $w \in \Sigma^*$ can't contain blanc symbols. Justify: Σ contains the blanc symbol	n
70.	A Turing machine M decides a language $L \subseteq \Sigma^*$, if for any word $w \in \Sigma^*$ the following is true.	
	If $w \in L$, then M accepts w ; and if $w \notin L$ then M rejects w . Justify : any word $w \in {\Sigma_0}^*$, for ${\Sigma_0} = \Sigma - \{\#\}$	n

PART 2: PROBLEMS

QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution : By definition, $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence

$$(L_1 \Sigma^* L_2)^* \subseteq \Sigma^*.$$

We have to show that also

$$\Sigma^{\star} \subseteq (L_1 \Sigma^{\star} L_2)^{\star}.$$

Let $w \in \Sigma^*$ we have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$.

QUESTION 2 Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*$$

Draw a state diagram and specify all components K, Σ, Δ, s, F of M. Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of *M* are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1\}$, $s = q_0$, $F = \{q_0, q_1\}$. We define Δ as follows. $\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}.$

Strings accepted : *ab*, *abab*, *ababa*, *ababbaba*, *ababbaba*, *....*

Solution 2 We use the book definition.

Components of *M* are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$. We define Δ as follows. $\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}.$

Strings accepted : *ab*, *abab*, *abba*, *ababba*, *ababbaba*,

QUESTION 3 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \to aS \mid A \mid e, \quad A \to abA \mid a \mid b\}.$$

1. Construct a finite automaton M, such that L(G) = L(M).

Solution We construct a non-deterministic finite automata

$$M = (K, \Sigma, \Delta, s, F)$$

as follows:

$$K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\},$$
$$\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$$

2. Trace a transitions of M that lead to the acceptance of the string *aaaababa*, and compare with a derivation of the same string in G.

Solution

The accepting computation is:

$$(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa) \vdash_{M} (A, ababa)$$
$$\vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$$

 ${\cal G}$ derivation is:

 $S \Rightarrow aS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA \Rightarrow aaaababA \Rightarrow aaaababa$

QUESTION 4 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

Solution $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \to aSa \mid bSb \mid a \mid b \mid e\}.$$

 $\begin{array}{ll} \textbf{Derivation example:} \ S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa\\ ababa^R = ((ab)a(ba))^R = (ba)^Ra^R(ab)^R = ababa. \end{array}$

Observation 1 We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$. From this we have that

$$(xyz)^R = ((xy)z)^R = z^R (xy)^R = z^R y^R x^R$$

Grammar correctness justification: observe that the rules $S \to aSa | bSb | e$ generate the language $L_1 = \{ww^R : w \in \Sigma^*\}$. With additional rules $S \to a | b$ we get hence the language $L = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$. Now we are ready to prove that

$$L = L(G) = \{ w \in \{a, b\}^* : w = w^R \}$$

- **Proof** Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.
- **c1:** $w^R = (xx^R)^R = (x^R)^R x^R = xx^R = w$ (used property: $(x^R)^R = x$).
- **c2:** $w^R = (xax^R)^R = (x^R)^R a^R x^R = xax^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).
- **c3:** $w^R = (xbx^R)^R = (x^R)^R b^R x^R = xbx^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $b^R = b$).

QUESTION 5 Construct a **pushdown** automaton M such that

$$L(M) = \{ w \in \{a, b\}^* : w = w^R \}$$

Solution 1 We define M as follows: $M = (K, \Sigma, \Gamma, \Delta, s, F)$

M components are

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b\}, F = \{f\}$$

$$\begin{split} \Delta &= \{ ((s,a,e),(s,a)), \ ((s,b,e),(s,b)), \ ((s,e,e),(f,e)), \ ((s,a,e),(f,a)), \\ & ((s,b,e),(f,b)), \ ((f,a,a),(f,e)), \ ((f,b,b),(f,e)) \} \end{split}$$

Trace a transitions of M that lead to the acceptance of the string *ababa*. Solution

QUESTION 6 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \ge 0\}.$$

Solution $M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a\}, s, F = \{f\},$$
$$\Delta = \{((s, b, e), (s, aa)), ((s, e, e), (f, e)), ((f, a, a), (f, e))\}$$

Explain the construction. Write motivation.

Solution M operates as follows: Δ pushes aa on the top of the stock while M is reading b, switches to f (final state) non-deterministically; and pops a while reading a (all in final state). M puts on the stock two a's for each b, and then remove all a's from the stock comparing them with a's in the word while in the final state.

Trace a transitions of M that leads to the acceptance of the string *bbaaaa*.

Solution The accepting computation is:

 $(s, bbaaaa, e) \vdash_M (s, baaaa, aa) \vdash_M (s, aaaa, aaaa) \vdash_M (f, aaaa, aaaa)$

 $\vdash_{M} (f, aaa, aaa) \vdash_{M} (f, aa, aa) \vdash_{M} (f, a, a) \vdash_{M} (f, e, e)$

Solution 2 $M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

$$\begin{split} K &= \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, s, F = \{f\}, \\ \Delta &= \{((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, aa, b), (f, e))\} \end{split}$$

QUESTION 7 Use PUMPING LEMMA to prove that

 $L = \{ww: w \in \{a, b\}^*\}$

in NOT regular. Consider ALL cases.

Solution Assume L is regular, then by PM Lemma there is $k \ge 0$ such that the Condition holds for all $w \in L$. Take $w = a^k b a^k b$. Observe that $|w| = 2k + 2 \ge k$, and so $|w| \ge k$. So there are $x, y, z \in \Sigma^*$, such that $y \ne e$, w = xyz and $|xy| \le k$.

Observe that y can't contain first (or the second) b. If y = b then $x = a^k$ and |xy| = k + 1 > k. Argument for the second b, and any location between first and the second b is the same. It proves that $x = a^j, y = a^i, z = a^m b a^k b$, for $i > 0, m \ge 0, j \ge 0$ and j + i + m = k.

BY PM Lemma $xy^n z \in L$ for all $n \ge 0$. Consider $xy^2 z = a^j a^{2i} a^m b a^k b$. Observe that $xy^2 z \in L$ iff j + 2i + m = k. On the other hand we had that j + i + m = k, and it gives 2i = i. This contradiction proves that L is not regular. Question 8 Use Pumping Lemma to prove that

$$L = \{a^{n^2} : n \ge 0\}\}$$

is not CF.

Solution look at the solutions to hmk 4.

QUESTION 9 Here is the definition:

Let $L \subseteq \Sigma^*$. For any $x, y \in \Sigma^*$ we define an equivalence relation on Σ^* as follows.

 $x \approx_L y \quad iff \quad \forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L).$

Let now

$$L = (aab \cup ab)^*.$$

FIND all equivalence classes of $x \approx_L y$.

Write all definitions and show work.

Solution We evaluate the equivalence classes as follows.

$$[e] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (z \in L \Leftrightarrow yz \in L) \} = L.$$

Observe that the main operator of L construction is *, hence $yz \in L$ iff $x, y \in L$.

$$[a] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (az \in L \Leftrightarrow yz \in L) \} = La.$$

Observe that $az \in L$ iff $z \in bL$ (z begins with b), or $z \in aL$ (z begins with a). Let $z \in bL$, hence when $yz \in L$, we get that $y \in Laa$ or $y \in La$ (y ends with aa, or a). But the case $y \in Laa$ is impossible, as for $y = aa(e \in L)$ we get $\forall z \in \Sigma^* (az \in L \Leftrightarrow aaz \in L)$ what is not true for z = ab; $aab \in L$ and $aaab \notin L$.

Let now $z \in aL$ we get $yz \in L$ iff $y \in La$.

$$[aa] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (aaz \in L \Leftrightarrow yz \in L) \} = Laa.$$

Observe that $aaz \in L$ iff $z \in bL$ (z begins with b), and hence $yz \in L$ iff $y \in Laa$ or $y \in La$ (y ends with aa, or a). But the case $y \in La$ is impossible, as for y = a we get $\forall z \in \Sigma^* (aaz \in L \Leftrightarrow az \in L)$ what is not true for z = ab.

Now observe that $bb \notin L$, $aaa \notin L$ and L can't contain any word in which bb or aaa appear. So we evaluate, as the next step [bb] and [aa].

$$[aaa] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (aaaz \in L \Leftrightarrow yz \in L) \}$$

$$[bb] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (bbz \in L \Leftrightarrow yz \in L) \}$$

Observe that the statements: $aaaz \in L, bbz \in L$ are false for all z and hence we are looking for $y \in \Sigma^*$ such that the statement $yz \in L$ is false for all $z \in \Sigma^*$. So y is any word from Σ^* that must contain at least one appearance of aaa or bb. It means that $y \in \Sigma^*(aaa \cup bb)\Sigma^*$ and

$$[aaa] = [bb] = \Sigma^*(aaa \cup bb)\Sigma^*.$$

We have hence 4 equivalence classes:

$$L, La, Laa, \Sigma^*(aaa \cup bb)\Sigma^*.$$

Question 10 Show that the following language L in NOT CF.

 $L = \{w \in \{a, b, c\}^* : all numbers of accurences of a, b, c in w are different\}.$

Solution First we represent L as $L = L_1 \cup L_2 \cup L_3$, for $L_1 = \{w \in \{a, b, c\}^* : \#a \neq \#b \text{ in } w\}$ - CF; $L_2 = \{w \in \{a, b, c\}^* : \#b \neq \#c \text{ in } w\}$ - CF; $L_3 = \{w \in \{a, b, c\}^* : \#c \neq \#a \text{ in } w\}$ - CF; and use the closure of CF languages under union.