
CSE303 PRACTICE FINAL
(5 extra points)

NAME ID:

Practice Final is DUE LAST DAY OF CLASSES. YOU DON’T NEED
to solve the PUMPING LEMMA and Turing Machine Problems - they will NOT
appear on the FINAL. I included them so show you the SOLUTIONS.

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing
Machines) and Problems from Q1−Q4, Practice Q1−Q4, and Midterm
and Practice midterm. I will choose some of these problems for your Final.

PART 1: Yes/No Questions Circle the correct answer to ALL questions.
Write ONE-SENTENCE justification to ten questions.

1. There is a set A and an equivalence relation defined on A that is an
order relation with 2 Maximal elements.
Justify:

y n

2. (ab ∪ a∗b)∗ is a regular language.
Justify:

y n

3. Let Σ = φ, there is L 6= φ over Σ.
Justify:

y n

4. A is uncountable iff | A | = c (continuum).
Justify:

y n

5. There are uncountably many languages over Σ = {a}.
Justify:

y n

6. Let RE be a set of regular expressions. L ⊆ Σ∗ is regular iff L =
L(r),
r ∈ RE.
Justify:

y n
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7. L∗ = {w ∈ Σ∗ : ∃q∈F (s, w) `∗M (q, e)}.
Justify:

y n

8. (a∗b ∪ φ∗) is a regular expression.
Justify:

y n

9. {a}∗{b} ∪ {ab} is a language (regular).
Justify:

y n

10. Let L be a language defined by (a∗b∪ab), i.e (shorthand) L = a∗b∪ab.
Then L ⊆ {a, b}∗.
Justify:

y n

11. Σ = {a}, there are c (continuum) languages over Σ.
Justify:

y n

12. L∗ = L+ − {e}.
Justify:

y n

13. L∗ = {w1 . . . wn, wi ∈ L, i = 1, . . . , n}.
Justify:

y n

14. For any languages L1, L2, L3 ⊂ Σ∗L1,∪(L2∩L3) = (L1∪L2)∩ (L1∪
L3).
Justify:

y n

15. For any languages L1, L2 ⊂ Σ∗, if L1 ⊆ L2, then (L1 ∪ L2)∗ = L∗2.
Justify:

y n

16. ((φ∗ ∩ a) ∪ (φ ∪ b∗)) ∩ φ∗ represents a language L = {e}.
Justify:

y n

17. L = ((φ∗ ∪ b) ∩ (b∗ ∪ φ)) (shorthand) has only one element.
Justify:

y n

18. L(M) = {w ∈ Σ∗ : (q, w) `∗M (s, e)}.
Justify:

y n

19. If M is a FA, then L(M) 6= φ.
Justify:

y n
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20. If M is a nondeterministic FA, then L(M) 6= φ.
Justify:

y n

21. L(M1) = L(M2) iff M1 and M2 are finite automata.
Justify:

y n

22. A language is regular iff L = L(M) and M is a deterministic automa-
ton.
Justify:

y n

23. If L is regular, then there is a nondeterministic M , such that L =
L(M).
Justify:

y n

24. Any finite language is CF.
Justify:

y n

25. Intersection of any two regular languages is CF language.
Justify:

y n

26. Union of a regular and a CF language is a CF language.
Justify:

y n

27. L1 is regular, L2 is CF, L1, L2 ⊆ Σ∗, then L1 ∩ L2 ⊆ Σ∗ is CF.
Justify:

y n

28. If L is regular, there is a PDA M such that L = L(M).
Justify:

y n

29. If L is regular, there is a CF grammar G, such that L = L(G).
Justify:

y n

30. L = {anbncn : n ≥ 0} is CF.
Justify:

y n

31. L = {anbn : n ≥ 0} is CF.
Justify:

y n

32. Let Σ = {a}, then for any w ∈ Σ∗, wRw ∈ Σ∗.
Justify:

y n
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33. A → Ax,A ∈ V, x ∈ Σ∗ is a rule of a regular grammar.
Justify:

y n

34. Regular grammar has only rules A → xA,A → x, x ∈ Σ∗, A ∈ V −Σ.
Justify:

y n

35. Let G = ({S, (, )}, {(, )}, R, S) for R = {S → SS | (S)}. L(G) is
regular.
Justify:

y n

36. The grammar with rules S → AB, B → b | bB, A → e | aAb generates
a language L = {akbj : k < j}.
Justify:

y n

37. L = {w ∈ {a, b}∗ : w = wR} is regular.
Justify:

y n

38. We can always show that L is regular using Pumping Lemma.
Justify:

y n

39. ((p, e, β), (q, γ)) ∈ ∆ means: read nothing, move from p to q.
Justify:

y n

40. L = {anbmcn : n,m ∈ N} is CF.
Justify:

y n

41. If L is regular, then there is a CF grammar G, such that L = L(G).
Justify:

y n

42. There is countably many non CF languages.
Justify:

y n

43. Every subset of a regular language is a regular language.
Justify:

y n

44. A parse tree is always finite.
Justify:

y n

45. Any regular language is accepted by some PD automata.
Justify:

y n
pfinal
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46. Every subset of a regular language is a language.
Justify:

y n

47. A parse tree is always finite.
Justify:

y n

48. Parse trees are equivalence classes.
Justify:

y n

49. For some languages, all grammars are ambiguous.
Justify:

y n

50. A CF grammar G is called ambiguous if there is w ∈ L(G) with at
least two distinct parse trees.
Justify:

y n

51. A CF language L is inherently ambiguous iff all context-free gram-
mars G, such that L(G) = L are ambiguous.
Justify:

y n

52. Programming languages are sometimes inherently ambiguous.
Justify:

y n

53. The largest number of symbols on the right-hand side of any rule of
a CF grammar G is called called a fanout and denoted by φ(G).
Justify:

y n

54. The Pumping Lemma for CF languages uses the notion of the fanout.
Justify:

y n

55. Any regular language is accepted by some PD automata.
Justify:

y n

56. Class of context-free languages is closed under intersection.
Justify:

y n

57. There is countably many non-regular languages.
Justify:

y n

58. Every subset of a regular language is regular.
Justify:

y n

5



59. A CF language is a regular language.
Justify:

y n
60. Class of context-free languages is closed under intersection.

Justify:
y n

61. Class of regular languages is closed under intersection.
Justify:

y n
62. A regular language is a CF language.

Justify:
y n

63. Turing Machines are as powerful as today’s computers.
Justify:

y n
64. It is proved that everything computable (algorithm) is computable

by a Turing Machine and vice versa.
Justify:

65. Church’s Thesis says that Turing Machines are the most powerful.
Justify:

y n
66. Turing Machines can read and write.

Justify:
y n

67. A configuration of a Turing machine M = (K, Σ, δ, s, H) is any el-
ement of a set K × Σ∗ × (Σ∗(Σ − {#}) ∪ {e}), where # denotes a
blanc symbol.
Justify:

y n
68. A computation of a Turing machine can start at any position of

w ∈ Σ.
69. A computation of a Turing machine can start at any state.

Justify:
y n

70. In Turing machines, words w ∈ Σ∗ can’t contain blanc symbols.
Justify:

y n
71. A Turing machine M decides a language L ⊆ Σ∗, if for any word

w ∈ Σ∗ the followong is true.
If w ∈ L, then M accepts w; and if w 6∈ L then M rejects w.
Justify:

y n
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PART 2: Problems

WRITE solutions to TWO problems of your choice. SOLVE all of them, a
practice.

QUESTION 1 Let Σ be any alphabet, L1, L2 two languages over Σ such that
e ∈ L1 and e ∈ L2. Show that

(L1Σ?L2)? = Σ?

Solution :

QUESTION 2 Construct a non-deterministic finite automaton M , such that

L(M) = (ab)∗(ba)∗.

Draw a state diagram and specify all components K, Σ, ∆, s, F Justify
your construction by listing strings accepted the state diagram of M .

State Diagram of M is:

Some elements of L(M) as defined by the state diagram are:
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Components of M are:

QUESTION 3 Given a Regular grammar G = (V, Σ, R, S), where

V = {a, b, S,A}, Σ = {a, b},

R = {S → aS |A |e, A → abA |a |b}.

1. Construct a finite automaton M , such that L(G) = L(M). You can draw a
diagram.

2. Trace a transitions of M that lead to the acceptance of the string aaaababa,
and compare with a derivation of the same string in G.
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QUESTION 4 Construct a context-free grammar G such that

L(G) = {w ∈ {a, b}∗ : w = wR}.

Justify your answer.

QUESTION 5 Construct a pushdown automaton M such that

L(M) = {w ∈ {a, b}∗ : w = wR}

Components of M are:

Explain your construction. Write motivation.
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Diagram of M is:

Trace a transitions of M that lead to the acceptance of the string ababa.

QUESTION 6 Construct a PDA M , such that

L(M) = {bna2n : n ≥ 0}.

Solution M = {K, Σ,Γ, ∆, s, F} for
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Explain the construction. Write motivation.

Trace a transitions of M that leads to the acceptance of the string bbaaaa.

QUESTION 7

Use PUMPING LEMMA to prove that

L = {ww : w ∈ {a, b}∗}

in NOT regular. Consider ALL cases.
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Question 8 Use Pumping Lemma to prove that

L = {an2
: n ≥ 0}}

is not CF.
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QUESTION 9 Here is the definition:

Let L ⊆ Σ∗. For any x, y ∈ Σ∗ we define an equivalence relation on Σ∗ as
follows.

x ≈L y iff ∀z ∈ Σ∗(xz ∈ L ⇔ yz ∈ L).

Let now
L = (aab ∪ ab)∗.

FIND all equivalence classes of x ≈L y.

Write all definitions and show work.
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Question 10 Show that the following language L in NOT CF.

L = {w ∈ {a, b, c} : all accurences of a, b, c in w are different}.
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