CSE303 PRACTICE FINAL (5 extra points)

NAME ID:

Practice Final is DUE LAST DAY OF CLASSES. YOU DON'T NEED to solve the PUMPING LEMMA and Turing Machine Problems - they will NOT appear on the FINAL. I included them so show you the SOLUTIONS.

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing Machines) and Problems from Q1 - Q4, Practice Q1 - Q4, and Midterm and Practice midterm. I will choose some of these problems for your Final.

PART 1: Yes/No Questions Circle the correct answer to ALL questions. Write ONE-SENTENCE justification to **ten questions**.

1.	There is a set A and an equivalence relation defined on A that is an order relation with 2 Maximal elements. Justify:		
	- as	\mathbf{y}	\mathbf{n}
2.	$(ab \cup a^*b)^*$ is a regular language.		
	Justify:	у	n
3.	Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ .	v	
	Justify:	у	\mathbf{n}
4.	A is uncountable iff $ A = \mathbf{c}$ (continuum). Justify :	Ū	
		\mathbf{y}	\mathbf{n}
5.	There are uncountably many languages over $\Sigma = \{a\}$. Justify:		
		\mathbf{y}	\mathbf{n}
6.	Let RE be a set of regular expressions. $L \subseteq \Sigma^*$ is regular iff $L = L(r)$,		
	$r \in RE$.		
	Justify:	v	n
		\mathbf{y}	11

- 7. $L^* = \{ w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash_M^* (q, e) \}.$ Justify:
- 8. $(a^*b \cup \phi^*)$ is a regular expression.

Justify:

9. $\{a\}^*\{b\} \cup \{ab\}$ is a language (regular). Justify:

10. Let L be a language defined by $(a^*b \cup ab)$, i.e (shorthand) $L = a^*b \cup ab$.

 \mathbf{n} \mathbf{y}

 \mathbf{n} \mathbf{y}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{y} \mathbf{n}

 \mathbf{y} \mathbf{n}

Then $L \subseteq \{a, b\}^*$. Justify:

- 11. $\Sigma = \{a\}$, there are **c** (continuum) languages over Σ . Justify:
- \mathbf{y} 12. $L^* = L^+ - \{e\}.$ Justify:
- \mathbf{y} \mathbf{n} 13. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}.$ Justify:
- \mathbf{n} \mathbf{y} 14. For any languages $L_1, L_2, L_3 \subset \Sigma^* L_1, \cup (L_2 \cap L_3) = (L_1 \cup L_2) \cap (L_1 \cup L_3)$ L_3). Justify:
- \mathbf{y} 15. For any languages $L_1, L_2 \subset \Sigma^*$, if $L_1 \subseteq L_2$, then $(L_1 \cup L_2)^* = L_2^*$. Justify:
- \mathbf{y} 16. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$. Justify:
- \mathbf{y} \mathbf{n} 17. $L = ((\phi^* \cup b) \cap (b^* \cup \phi))$ (shorthand) has only one element.
- Justify: \mathbf{n} \mathbf{y}
- 18. $L(M) = \{ w \in \Sigma^* : (q, w) \vdash_M^* (s, e) \}.$ Justify: \mathbf{n} \mathbf{y} 19. If M is a FA, then $L(M) \neq \phi$.
- Justify: \mathbf{n}

20. If M is a nondeterministic FA, then $L(M) \neq \phi$. Justify:

- y n
- 21. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. **Justify**:
- y n
- 22. A language is regular iff L=L(M) and M is a deterministic automaton. Justify:
- y n
- 23. If L is regular, then there is a nondeterministic M, such that L=L(M).

 Justify:

y n

 \mathbf{n}

24. Any finite language is CF. **Justify**:

- 25. Intersection of any two regular languages is CF language.

 Justify:

 \mathbf{y}

- 26. Union of a regular and a CF language is a CF language.

 Justify:
- / n
- 27. L_1 is regular, L_2 is CF, $L_1, L_2 \subseteq \Sigma^*$, then $L_1 \cap L_2 \subseteq \Sigma^*$ is CF. **Justify**:
- y n
- 28. If L is regular, there is a PDA M such that L = L(M). Justify:
- y n
- 29. If L is regular, there is a CF grammar G, such that L = L(G). Justify:
- y n

30. $L = \{a^n b^n c^n : n \ge 0\}$ is CF. Justify:

y n

Justify.

y n

31. $L = \{a^n b^n : n \ge 0\}$ is CF. Justify:

y n

32. Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*, w^R w \in \Sigma^*$. Justify:

y n

33. $A \to Ax, A \in V, x \in \Sigma^*$ is a rule of a regular grammar. Justify: \mathbf{n} \mathbf{y} 34. Regular grammar has only rules $A \to xA, A \to x, x \in \Sigma^*, A \in V - \Sigma$. Justify: \mathbf{n} \mathbf{y} 35. Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \to SS \mid (S)\}$. L(G) is regular. Justify: \mathbf{y} \mathbf{n} 36. The grammar with rules $S \to AB, B \to b \mid bB, A \to e \mid aAb$ generates a language $L = \{a^k b^j : k < j\}.$ Justify: \mathbf{y} \mathbf{n} 37. $L = \{w \in \{a, b\}^* : w = w^R\}$ is regular. Justify: \mathbf{n} \mathbf{y} 38. We can always show that L is regular using Pumping Lemma. Justify: \mathbf{y} \mathbf{n} 39. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q. Justify: \mathbf{n} \mathbf{y} 40. $L = \{a^n b^m c^n : n, m \in N\}$ is CF. Justify: \mathbf{n} \mathbf{y} 41. If L is regular, then there is a CF grammar G, such that L = L(G). Justify: \mathbf{y} \mathbf{n} 42. There is countably many non CF languages. Justify: \mathbf{n} \mathbf{y} 43. Every subset of a regular language is a regular language. Justify: \mathbf{y} \mathbf{n} 44. A parse tree is always finite. Justify: \mathbf{n} 45. Any regular language is accepted by some PD automata. Justify: \mathbf{n}

pfinal

46.	Every subset of a regular language is a language. Justify:		
47.	A parse tree is always finite.	y	n
10	Justify:	\mathbf{y}	n
40.	Parse trees are equivalence classes. Justify:	\mathbf{y}	n
49.	For some languages, all grammars are ambiguous. Justify:		
50.	A CF grammar G is called ambiguous if there is $w \in L(G)$ with at least two distinct parse trees. Justify :	у	n
51.	A CF language L is inherently ambiguous iff all context-free grammars G , such that $L(G)=L$ are ambiguous. Justify :	у	n
52.	Programming languages are sometimes inherently ambiguous. Justify:	y	n
53	The largest number of symbols on the right-hand side of any rule of	\mathbf{y}	n
	a CF grammar G is called called a fanout and denoted by $\phi(G)$. Justify:		
54.	The Pumping Lemma for CF languages uses the notion of the fanout. Justify:	\mathbf{y}	n
55.	Any regular language is accepted by some PD automata. Justify:	y	n
56.	Class of context-free languages is closed under intersection. Justify:	у	n
57.	There is countably many non-regular languages. Justify:	y	n
58.	Every subset of a regular language is regular. Justify:	y	n
	o usury.	\mathbf{v}	\mathbf{n}

59.	A CF language is a regular language. Justify:		
60.	Class of context-free languages is closed under intersection.	y	n
61	Justify: Class of regular languages is closed under intersection.	\mathbf{y}	n
01.	Justify:	\mathbf{y}	n
62.	A regular language is a CF language. Justify:	3 7	n
63.	Turing Machines are as powerful as today's computers. Justify:	y	n
64.	It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa. Justify:	У	n
65.	Church's Thesis says that Turing Machines are the most powerful. Justify:		
66.	Turing Machines can read and write. Justify:	y	n
67.	A configuration of a Turing machine $M=(K,\Sigma,\delta,s,H)$ is any element of a set $K\times \Sigma^*\times (\Sigma^*(\Sigma-\{\#\})\cup \{e\})$, where $\#$ denotes a blanc symbol. Justify :	У	n
68.	A computation of a Turing machine can start at any position of $w \in \Sigma$.	y	n
69.	A computation of a Turing machine can start at any state. Justify:		
70.	In Turing machines, words $w \in \Sigma^*$ can't contain blanc symbols. Justify :	У	n
71.	A Turing machine M decides a language $L\subseteq \Sigma^*,$ if for any word $w\in \Sigma^*$ the following is true.	y	n
	If $w \in L$, then M accepts w ; and if $w \notin L$ then M rejects w . Justify:	3 7	•

PART 2: Problems

WRITE solutions to TWO problems of your choice. SOLVE all of them, a practice.

QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution:

QUESTION 2 Construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*.$$

Draw a state diagram and specify all components K, Σ, Δ, s, F Justify your construction by listing strings accepted the state diagram of M.

State Diagram of M is:

Some elements of L(M) as defined by the state diagram are:

Components of M are:

QUESTION 3 Given a Regular grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},$$

$$R = \{S \rightarrow aS \mid A \mid e, \quad A \rightarrow abA \mid a \mid b\}.$$

1. Construct a finite automaton M, such that L(G) = L(M). You can draw a diagram.

2. Trace a transitions of M that lead to the acceptance of the string aaaababa, and compare with a derivation of the same string in G.

QUESTION 4 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

 ${\bf QUESTION~5}~$ Construct a ${\bf pushdown}$ automaton M such that

$$L(M) = \{ w \in \{a, b\}^* : \ w = w^R \}$$

Components of M are:

 ${\bf Explain}\,$ your construction. Write motivation.

Diagram of M is:

Trace a transitions of M that lead to the acceptance of the string ababa.

QUESTION 6 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \ge 0\}.$$

Solution $M = \{K, \Sigma, \Gamma, \Delta, s, F\}$ for

Explain the construction. Write motivation.

Trace a transitions of M that leads to the acceptance of the string bbaaaa.

QUESTION 7

Use PUMPING LEMMA to prove that

$$L = \{ww: w \in \{a, b\}^*\}$$

in NOT regular. Consider ALL cases.

Question 8 Use Pumping Lemma to prove that

$$L = \{a^{n^2} : n \ge 0\}\}$$

is not CF.

${\bf QUESTION~9}~{\bf Here}$ is the definition:

Let $L\subseteq \Sigma^*.$ For any $x,y\in \Sigma^*$ we define an equivalence relation on Σ^* as follows.

$$x \approx_L y \quad iff \quad \forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L).$$

Let now

$$L = (aab \cup ab)^*.$$

FIND all equivalence classes of $x \approx_L y$.

Write all definitions and show work.

Question 10 Show that the following language L in NOT CF.

 $L = \{w \in \{a,b,c\}: \ all \ accurences \ of \ a,b,c \ in \ w \ are \ different\}.$