Parse Trees

Example.

\[G = (V, \Sigma, R, s) \]

\[\Sigma = \{ , \} \] \[V - \Sigma = \{ s \} \]

\[R = \{ s \rightarrow sss | (s) \} \]

Look at some derivations:

\[
\begin{align*}
S & \rightarrow SS \\
SS & \rightarrow SS \\
(s)S & \rightarrow (s)(s) \\
(s) & \rightarrow () \\
() & \rightarrow ()
\end{align*}
\]

All these derivations are in a sense "the same". They use the same rules; the only difference is the "order" in the string where they are applied.
Intuitively we picture them as a **PARSE TREE**

- **ROOT**
- **NODES**
 - Each node has a **LABEL**
 - **LEAVES**—labeled by
 - **TERMINALS**, or possibly **ε**

By **concatenating** the **LABELS** from left to right, we obtain the derived string of **terminals**, called the **YIELD** of the parse tree.

Derivations:

\[
S \Rightarrow SS \Rightarrow (s)(s) \Rightarrow (s)s \Rightarrow (s)s \Rightarrow s \Rightarrow (s)(s) \Rightarrow (s)(s)
\]
\[S \Rightarrow SS \Rightarrow SS(S) \Rightarrow SS(S)(S) \Rightarrow S(S)(S)(S) \Rightarrow (S)(S)(S)(S) \]

\[(S)(S)(S)(S) \Rightarrow (S)(S)(S)(S) \Rightarrow (S)(S)(S)(S) \]

You can read all possible derivations of \((S)(S)(S)(S)\) from the parse tree.
Example

\[G = (\{ S, a \}, \{ a \}, \{ S \rightarrow SS | aS, S \}, S) \]

Two derivations of \(aa + L(G) \)

\[S \rightarrow SS \rightarrow aS \rightarrow aa \]
\[S \rightarrow SS \rightarrow Sa \rightarrow aa \]

Parse Tree

Derivation

\[S \rightarrow SS \rightarrow Sa \rightarrow Ssa \rightarrow aSa \rightarrow aaa \]

Parse Tree

Exercise: Read all possible derivations of \(aaa \)
Example

\[G = \{ \{ S \rightarrow SS \}, \{ S \rightarrow (S) \}, \{ S \rightarrow (S) | (S) \rightarrow e \} \} \]

\[D_1 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow (())(()) \]

\[D_2 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow (())(()) \]

\[D_3 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow ((S))(S) \Rightarrow (())(()) \]

Parse Tree

\[D_1, D_2, D_3 \text{ have the same parse tree} \]
More derivations described by the parse tree (of D, D_2, D_3)

```
D_4 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())()
D_5 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow (())() \Rightarrow (())()
D_6 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow (S)(()) \Rightarrow ((S))(()) \Rightarrow (())()
D_7 = S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())()
D_8 = S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow (())() \Rightarrow (())()
D_9 = S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow (S)() \Rightarrow ((S))() \Rightarrow (())()
D_{10} = S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow (S)() \Rightarrow ((S))() \Rightarrow (())()
```
Derivation

\[s \rightarrow ss \rightarrow sss \rightarrow s(s)s \rightarrow s((s)s) \rightarrow s((1)s) \rightarrow s((1))(1) \rightarrow s((1))(1) \]

has a parse tree

ID Note: Parse trees are ways of representing derivations, so that representing differences due to the order of application of rules are suppressed.
Pare trees represent equivalence classes of derivations.

Def. Two derivations are equivalent if they can be transformed into another via a sequence of "switchings" in the order in which rules applied. Such "switching" can replace a derivation either by one that precedes it, or by the one that it precedes.

[\mathcal{D}(1)(1)] = \{D_1, D_2, \ldots, D_{10}\} = \{D_i\}

The all represent applications of the same rules at the same positions in the strings, only differing in the relative order of these applications.

- Define: \(D < D'\) (use \(\leq\) defined).
Each equivalence class of derivations (ex: $D_{(11)}(1)$) that is to say, **EACH PARSE TREE** contains a derivation, that is **MAXIMAL** under order \leq.

In our example, it is D_{11}.

Then, **THIS MAXIMAL DERIVATION EXISTS IN EACH PARSE TREE** and is called a **LEFT MOST DERIVATION**.

Algorithm for **LMD**:

Start at the root label, repeatedly replace the leftmost nonterminal in the current string according to the rule defined by the parse tree.
Parse tree

RMD:
- Start at root
- Replace rightmost nonterminal
- Repeat

LMD:
- LMD - maximal (MAX)
- RMD - minimal (MIN)
- Both are unique

D1:
- We define similarly the rightmost derivation

RMD
Theorem

Let $G = (V, \Sigma, R, S)$ be a CFG and let $A \in V - \Sigma$, $w \in \Sigma^*$.

The following conditions are equivalent:

(a) $A \xrightarrow{*} w$

(b) There is a PARSE TREE with root A and yield w.

(c) There is a LEFTMOST derivation

$$A \xrightarrow{L} w$$

(d) There is a RIGHTMOST derivation

$$A \xrightarrow{R} w$$
Ambiguity

We had two parse trees generating derivations of (())():

T₁

S → S S
S → (S)
S → ε

D₁...
Dₙ

T₂

S → S S
S → (S)
S → ε

WRITE all derivations a T₂

Grammars such that they have strings with two or more distinct parse trees are called ambiguous.
Def: G is ambiguous if there is a $w \in L(G)$ such that w has two at least two different parse trees.
Example

\[G_1 = (\{+,-,(), id, E\}, \{+,-,(), id\}, E, \{E \rightarrow E+E \mid E \cdot E \mid (E) \mid id\}) \]

This is a simpler grammar, which generates the same language as

\[G = \{E \rightarrow E+T | T \rightarrow T*F | T \rightarrow F | F \rightarrow (E) | id\} \]

\[L(G) = LCG_1 \]

\[G \text{ is NOT AMBIGUOUS} \]

\[G_1 \text{ is AMBIGUOUS} \]

There are two parse trees "like" corresponding to

\[T_1 \quad \text{id + id \cdot id} \]

\[T_2 \quad (id + id) \cdot id \]

\[\text{These rules are more natural.} \]
What ambiguity mean?

We can assign different meanings to our expressions by different parse trees.

\[n + (km) \]
PARSING a string - assigning a parse tree to a given string of a language is an important step towards understanding the structure of the string - which defines why the string belongs to a language. Parse tree defines "a meaning" of a string.

Ambiguous grammars are of no help in parsing - no unique meaning. Some grammars like G_1 can be made unambiguous (G). Our derivation grammar is ambiguous, but can be made unambiguous for programming languages, we want unambiguous grammars.

L is inherently ambiguous if all G, such $L = L(G)$ are ambiguous.

Programming languages are never inherently ambiguous.