cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

LECTURE 9

CHAPTER 3 CONTEXT-FREE LANGUAGES

- 1. Context-free Grammars
- 2. Parse Trees
- 3. Pushdown Automata
- 4. Pushdown automata and context -free grammars
- 5. Languages that are not context- free

CHAPTER 3 PART 1: Context-free Grammars

Context-free Grammars

Finite Automata are formal language recognizers

- they are devises that accept valid strings

Context-free Grammars are a certain type of formal language generators

- they are devises that **produce** valid strings

Context-free Grammars

Such a language generator devise begins, when given a start symbol, to construct a string

Its operation is not completely determined from he beginning but is nevertheless limited by a **finite** set of rules

The process **stops**, and the **devise** outputs a completed **string**

The language defined by the **devise** is the set of all strings it can **produce**

Definition

A Context-Free Grammar is a quadruple

$$G = (V, \Sigma, R, S)$$

where

V is an alphabet

 $\Sigma \subset V$ is a set of **terminals**

 $V - \Sigma$ is the set of **nonterminals**

R is a finite set of rules

$$R \subseteq (V - \Sigma) \times V^*$$

 $S \in V - \Sigma$ is the start symbol

The alphabet V consists of two disjoint parts: **nonterminals** $V - \Sigma$ and **terminals** Σ , i.e.

$$V = (V - \Sigma) \cup \Sigma$$

Notations

We use symbols of capital letters, with indices if necessary for **nonterminals** $V - \Sigma$, i.e.

$$A, B, C, S, T, X, Y, \dots A_i, \dots \in V - \Sigma$$

The **terminal** alphabet Σ is as in case of the finite automata, the alphabet the words of the language are made from and we denote its elenets, as before by small letters, or symbol σ , with indices if necessary, i.e.

$$a, b, c, \sigma, \ldots a_i, \ldots \sigma_i, \ldots \in \Sigma$$

Notations

By definition, the set of **rules** R of a context-free grammar G is a **finite** set such that

$$R \subseteq (V - \Sigma) \times V^*$$

It means that $R = \{(A, u) : A \in (V - \Sigma) \text{ and } u \in V^*\}$

where A is a **nonterminal** and $u \in V^*$ is a string that contains some **terminals** and **nonterminals**We write

$$A \rightarrow_G u$$
 or $A \rightarrow u$ for any $(A, u) \in R$

Given a context-free grammar

$$G = (V, \Sigma, R, S)$$

Definition

For any $u, v \in V^*$, we define a **one step derivation**

$$u \Rightarrow v$$

of v from u as follows

 \Rightarrow_G if and only if there are $A, x, y, v' \in V^*$ such that

- 1. $A \in V \Sigma$
- 2. u = xAy and v = xv'y
- **2.** A \rightarrow v' for certain $r \in R$

One step derivation in plain words:

 $u \Rightarrow_G v$ if and only if we obtain v from u by a **direct** application of one rule $r \in R$

Definition of the language L(G) generated by G

$$L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

where $\Rightarrow_{\mathbf{G}}^*$ is a transitive, reflexive closure of $\Rightarrow_{\mathbf{G}}$

Given a **derivation** of $\mathbf{w} \in \Sigma^*$ in G

$$S \stackrel{*}{\underset{G}{\Rightarrow}} w$$

We write is in detail (by definition of \Rightarrow_G^*) as

$$S \underset{G}{\Rightarrow} w_1 \underset{G}{\Rightarrow} w_2 \underset{G}{\Rightarrow} \ldots \underset{G}{\Rightarrow} w \ \text{ for } \ w_i \in V^*, \ w \in \Sigma$$

or when G is known as

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w$$

or just as a sequence of words

$$S, w_1, w_2, \ldots w$$
 for $w_i \in V^*, w \in \Sigma^*$

Context-free Grammar Example

Example

Consider a grammar $G = (V, \Sigma, R, S)$ for $V = \{S, a, b\}$, $\Sigma = \{a, b\}$ and $R = \{r1 : S \rightarrow aSb, r2 : S \rightarrow e\}$ Here are some **derivations** in **G D1** $S \Rightarrow e$ so we have that

$$e \in L(G)$$

D2 $S \Rightarrow^{r1} aSb \Rightarrow^{r1} aaSbb \Rightarrow^{r2} aabb$ or we just write the derivation as

and we have that

$$aabb \in L(G)$$

Context-free Languages

D3 $S \Rightarrow^{r1} aSb \Rightarrow^{r1} aaSbb \Rightarrow^{r1} aaaSbbb \Rightarrow^{r2} aaabbb$ or we also write the derivation as

and we have that

$$a^3b^3 \in L(G)$$

We prove, by induction on the length of derivation that

$$L(G) = \{a^n b^n : n \ge 0\}$$

Definition

A language L is a **context-free language** if and only if there is a **context-free grammar** G such that

$$L = L(G)$$

We have just proved

Fact 1

The language $L = \{a^n b^n : n \ge 0\}$ is **context-free**

Observe that we also proved that the language

$$L = \{a^nb^n: n \ge 0\}$$

is not regular

Denote by RL the class of all regular languages and by CFL the class of all contex-free languages

Hence we have proved

Fact 2
$$RL \neq CFL$$

Our next GOAL will be to prove the following

Theorem

The the class of all regular languages is a proper subset of the class of all contex-free languages, i.e.

$$RL \subset CFL$$

Exercise 1

Show that the regular language $L = \{a^*: a \in \Sigma\}$ is context-free

Proof By definition of **context-free** language we have to construct a CF grammar G such that

$$L = L(G)$$
 i.e $L(G) = \{a^* : a \in \Sigma\}$

Here is the grammar $G = (V, \Sigma, R, S)$

$$\text{for} \quad V = \{S, a\}, \qquad \Sigma = \{a\} \ \text{and} \quad$$

$$R = \{ S \rightarrow aS, S \rightarrow e \}$$

We write rules of R in a shorter way as

$$R = \{ S \rightarrow aS \mid e \}$$

Here is a formal **derivation** in G:

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaa$$

or written as a sequence of words

and we have

aaaa
$$\in L(G)$$

We prove, by induction on the length of derivation that

$$L(G) = \{a^*: a \in \Sigma\}$$

Exercise 2

Show that the NOT regular language

$$L = \{ww^R : w \in \{a, b\}^*\}$$

is context-free

We construct a context-free grammar G such that

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

as $G = (V, \Sigma, R, S)$
where $V = \{a,b,S\}, \Sigma = \{a,b\}$
 $R = \{S \rightarrow aSa \mid bSb \mid e\}$

Derivation example:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbbba$ or written as S, aSa, abSba, abbSbba, abbbba We prove, by induction on the length of derivation that

$$ww^R \in L(G)$$
 for any $w \in \Sigma^*$

Remark

The set of rules

$$R = \{S \rightarrow aSa \mid aSb \mid c\}$$

defines a grammar G with the language

$$L(G) = \{wcw^R : w \in \{a, b\}^*\}$$

Exercise 3

Show that the NOT regular language

$$L = \{ w \in \{a, b\}^* : w = w^R \}$$

is context-free

We construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}$$

as follows

$$G=(V,\Sigma,R,S), ext{ where } V=\{a,b,S\}, \ \Sigma=\{a,b\}$$

$$R=\{S
ightarrow aSa \ |bSb \ | \ a \ | \ b \ | \ e\}$$

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$ We check

$$(ababa)^R = ((aba)(ba))^R = (ba)^R ((ab)a)^R = aba(ab)^R = ababa$$

We used **Property**: for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$ and **Definition**: for any $x \in \Sigma^*$, $a \in \Sigma$, $e^R = e$, $(xa)^R = ax^R$

Grammar correctness justification

Observe that the rules

$$S \rightarrow aSa \mid bSb \mid e$$

generate the language (as was proved in Example 2)

$$L_1 = \{ww^R : w \in \Sigma^*\}$$

Adding additional rules $S \rightarrow a \mid b$ we get that

$$L(G) = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$$

Hence

$$w \in L(G)$$
 iff $w = xx^R$ or $w = xax^R$ or $w = xbx^R$

Hence

$$w \in L(G)$$
 iff $w = xx^R$ or $w = xax^R$ or $w = xbx^R$
We show now that in each case $w = w^R$, i.e.
we **prove** that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}$$

as follows

Case 1:
$$\mathbf{w} = \mathbf{x} \mathbf{x}^R$$

We evaluate

$$\mathbf{w}^{R} = (\mathbf{x}\mathbf{x}^{R})^{R} = (\mathbf{x}^{R})^{R}\mathbf{x}^{R} = \mathbf{x}\mathbf{x}^{R} = \mathbf{w}$$

We used property: $(x^R)^R = x$

Case 2:
$$w = xax^R$$

We evaluate

$$w^R = (xax^R)^R = ((xa)x^R)^R = (x^R)^R(xa)^R = xax^R = w$$

We used properties $(x^R)^R = x$ and $(xy)^R = y^Rx^R$

Case 3:
$$w = xbx^R$$

We evaluate

$$w^{R} = (xbx^{R})^{R} = ((xb)x^{R})^{R} = (x^{R})^{R}(xb)^{R} = xbx^{R} = w$$

This ends the proof

Regular Grammars

Definition

A context-free grammar

$$G = (V, \Sigma, R, S)$$

is called regular, or right-linear if and only if

$$R\subseteq (V-\Sigma)\times \Sigma^*((V-\Sigma)\cup \{e\})$$

Regular Grammars

That is, a regular (right-linear) grammar is a context-free grammar such that the right-hand side of every rule contains at most one **nonterminal**, which if present, must be the last symbol in the string

The rules must have a form

$$A \rightarrow wB$$
, $A \rightarrow w$ for any $A, B \in V - \Sigma$, $w \in \Sigma^*$

Remark

We didn't say $A \neq B$!

Exercise 4

Given a **regular grammar**
$$G = (V, \Sigma, R, S)$$
, where $V = \{a, b, S, A\}$, $\Sigma = \{a, b\}$
$$R = \{S \rightarrow aS \mid A \mid e, A \rightarrow abA \mid a \mid b\}$$

1. Construct a finite automaton M, such that L(G) = L(M)Solution

We construct a non-deterministic finite automaton

$$M = (K, \ \Sigma, \ \Delta, \ s, \ F)$$
 for $K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\}$ $\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$

Exercise 4

2. Write a computation of M that leads to the **acceptance** of the string **aaaababa**

Compare it with a $\frac{\text{derivation}}{\text{derivation}}$ of the same string in $\frac{\text{G}}{\text{G}}$

Solution

The accepting computation of M is:

$$(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa)$$

$$\vdash_{M} (A, ababa) \vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$$

Corresponding **derivation** in **G** is:

$$S\Rightarrow aS\Rightarrow aaS\Rightarrow aaaS\Rightarrow aaaA\Rightarrow aaaabA$$
 $\Rightarrow aaaababA\Rightarrow aaaababa$

We are going to prove the following **theorem** that establishes the **relationship** between the Regular Languages and Regular Grammars

L-G Theorem

Language L is **regular** if and only if there exists a **regular grammar** G such that

$$L = L(G)$$

By definition, any regular grammar is context free and hence generates a context-free language and we get that

R - CF Theorem

The the class RL of all regular languages is a proper subset of the class CFL of all context-free languages, i.e.

RL C CFL

L-G Theorem

Language L is **regular** if and only if there exists a **regular** grammar G such that

$$L = L(G)$$

Proof part 1

Suppose that L is **regular**; then L is accepted by a **deterministic** finite automaton

$$M = (K, \Sigma, \delta, s, F)$$

We construct a regular grammar G as follows

$$G = (V, \Sigma, R, S)$$

for
$$V = \Sigma \cup K$$
, $S = s$

$$R = \{q \rightarrow ap : \delta(q, a) = p\} \cup \{q \rightarrow e : q \in F\}$$

We need now to show that L(M) = L(G)

Observe that the rules of G are designed to mimic exactly the moves of M

For any
$$\sigma_1, \ldots, \sigma_n \in \Sigma$$
 and $p_0, \ldots, p_n \in K$

$$(p_0, \sigma_1, \ldots, \sigma_n) \vdash_{\mathbf{M}} (p_1, \sigma_2, \ldots, \sigma_n) \vdash_{\mathbf{M}} \ldots \vdash_{\mathbf{M}} (p_n, e)$$

if and only if

$$p_0 \overset{*}{\underset{G}{\Rightarrow}} \sigma_1 p_1 \overset{*}{\underset{G}{\Rightarrow}} \sigma_1 \sigma_2 p_2 \dots \overset{*}{\underset{G}{\Rightarrow}} \sigma_1 \sigma_2 \dots \sigma_n p_n$$

This is because

$$\delta(q, a) = p$$
 if and only if $q \rightarrow ap$

We **prove** now that
$$L(M) \subseteq L(G)$$

Suppose that $w \in L(M)$
Then for some $p \in F$,

$$(s, w) \vdash_{M}^{*} (p, e)$$

but

$$\delta(q, a) = p$$
 if and only if $q \rightarrow ap$

is

$$S \stackrel{*}{\underset{G}{\Rightarrow}} w$$

so
$$w \in L(G)$$

We **prove** now that $L(G) \subseteq L(M)$

Suppose that $w \in L(G)$

Then

$$S \overset{*}{\underset{G}{\Rightarrow}} w$$
 that is $s \overset{*}{\underset{G}{\Rightarrow}} w$

The rule **used** at the last step of the derivation must have been of the form

$$p \rightarrow e$$
 for some $p \in F$

and so

$$s \stackrel{*}{\Rightarrow} wp \Rightarrow w$$

But then

$$(s, w) \vdash_{M}^{*} (p, e)$$

and so $w \in L(M)$ and

$$L(M) = L(G)$$

Proof of L-G Theorem

Proof part 2

Let now G be any regular grammar

$$G = (V, \Sigma, R, S)$$

We define a **nondeterministic** automaton M such that

$$L(M) = L(G)$$

as follows

$$M=(K,\ \Sigma,\ \Delta,\ s,\ F)$$
 $K=(V-\Sigma)\cup\{f\}$ where f is a new element $s=S,\quad F=\{f\}$

Proof of L-G Theorem

The set \triangle of transitions is

$$\Delta = \{ (A, w, B) : A \to wB \in R; A, B \in V - \Sigma, w \in \Sigma^* \}$$

$$\cup \{ (A, w, f) : A \to w \in R; A, B \in V - \Sigma, w \in \Sigma^* \}$$

Once again, derivations are mimicked by the moves, i.e, for any

$$A_1,\ldots,A_n\in V-\Sigma,\ w_1,\ldots w_n\in \Sigma^*$$

$$A_1\Rightarrow_G w_1A_2\Rightarrow_G\cdots\Rightarrow_G w_1\ldots w_{n-1}A_n\Rightarrow_G w_1\ldots w_n$$
 if and only if

$$(A_1, w_1 \dots w_n) \vdash_M (A_2, w_2 \dots w_n) \vdash_M \dots \vdash_M (A_n, w_n) \vdash_M (f, e)$$

Exercise 1

Given M defined by the **diagram** below, **construct** a regular grammar G, such that L(M) = L(G)

We follow the **proof** of L-G Theorem and we "read" the rules of G as follows

$$R = \{q_0 \rightarrow aq_1 \mid bq_1, q_1 \rightarrow aq_1 \mid bq_1, q_0 \rightarrow e, q_1 \rightarrow e\}$$

We re-write the rules using a standard notation for nonterminals as

$$R = \{S \rightarrow aA \mid bA, A \rightarrow aA \mid bA, S \rightarrow e, A \rightarrow e\}$$

Exercise 2

Given M defined by the **diagram** below, **construct** a regular grammar G, such that L(M) = L(G)

We "read" the rules of G as follows

$$R = \{q_0 \ \rightarrow \ aq_1 \mid bq_2, \quad q_1 \ \rightarrow \ aq_1 \mid bq_2 \mid e, \quad q_2 \ \rightarrow \ aq_2 \mid bq_0 \mid e\}$$

We re-write the rules using a standard notation for nonterminals as

$$R = \{S \rightarrow aA \mid bB, A \rightarrow aa \mid bB \mid e, B \rightarrow aB \mid bS \mid e\}$$

Exercise 3

Given a grammar G defined by the set of rules, **construct** a finite automata G, such that L(M) = L(G)

Here is a **picture** depicting the pattern of such constractions

Exercise 4

Given a grammar G defined by the set of rules, **construct** a finite automata G, such that L(M) = L(G)

Here is a picture depicting the pattern of such contractions

Exercise 5 PROVE the second part of L-G Theorem

Justify if True or False

- Q1 The set of terminals in a context free grammar G is a subset of the alphabet of G
- ${\bf Q2}$ The set of terminals and non- terminals in a context free grammar ${\bf G}$ form the alphabet of ${\bf G}$
- Q3 The set of non-terminals is always non- empty
- Q4 The set of terminals is always non- empty

Justify if True or False

Q1 The set of terminals in a context free grammar G is a subset of the alphabet of G

True By definition: $\Sigma \subseteq V$

Q2 The set of terminals and non-terminals in a context free grammar G form the alphabet of G

True By definition: $V = \Sigma \cup (V - \Sigma)$

Justify if True or False

Q3 The set of non-terminals is always non- empty

True By definition: $S \in V$

Q4 The set of terminals is always non-empty

False $\Sigma = \emptyset$ is a finite set

Justify if True or False

Q5 Let G be a context-free grammar

$$L(G) = \{ w \in V : S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

Q6 The language $L \subseteq \Sigma^*$ is context-free if and only if

$$L = L(G)$$

Q7 A language is context-free if and only if it is accepted by a context-free grammar

Justify if True or False

Q5 Let G be a context-free grammar

$$L(G) = \{ w \in V : S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

False Should be $w \in \Sigma^*$

Q6 The language $L \subseteq \Sigma^*$ is context-free if and only if L = L(G)

False Holds only when G is a context -free grammar

Justify if True or False

Q7 A language is context-free if and only if it is accepted by a context-free grammar

False Language is generated, not accepted by a grammar

Q8 Any regular language is context-free

True: Regular languages are generated by regular grammars, that are special case of CF grammars

Q9 Language is regular if and only if is generated by a regular grammar (right-linear)

True: Theorem proved in class

Justify if True or False

Q10 $L = \{ w \in \{a, b\}^* : w = w^R \}$ is context-free

True: **G** with the rules:

 $S \rightarrow aSa|bSb|a|b||e$ is the required grammar

Q11 A regular language is a CF language

True: Regular grammar is a special case of a context-free

grammar