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CHAPTER 3
PART 1: Context-free Grammars



Context-free Grammars

Finite Automata are formal language recognizers

- they are devises that accept valid strings

Context-free Grammars are a certain type of formal

language generators

- they are devises that produce valid strings



Context-free Grammars

Such a language generator devise begins,

when given a start symbol, to construct a string

Its operation is not completely determined from he beginning

but is nevertheless limited by a finite set of rules

The process stops,

and the devise outputs a completed string

The language defined by the devise is the set of all strings

it can produce



Context-free Grammar Definition

Definition

A Context-Free Grammar is a quadruple

G = (V , Σ, R , S)

where

V is an alphabet

Σ ⊆ V is a set of terminals

V − Σ is the set of nonterminals

R is a finite set of rules

R ⊆ (V − Σ)× V∗

S ∈ V − Σ is the start symbol



Context-free Grammar Definitions

The alphabet V consists of two disjoint parts: nonterminals
V − Σ and terminals Σ, i.e.

V = (V − Σ) ∪ Σ

Notations

We use symbols of capital letters, with indices if necessary for
nonterminals V − Σ, i.e.

A , B ,C ,S,T ,X ,Y , . . .Ai , · · · ∈ V − Σ

The terminal alphabet Σ is as in case of the finite automata,
the alphabet the words of the language are made from and we
denote its elenets, as before by small letters, or symbol σ,
with indices if necessary, i.e.

a, b , c, σ, . . . ai , . . . σi , · · · ∈ Σ



Context-free Grammar Definition

Notations

By definition, the set of rules R of a context-free grammar G
is a finite set such that

R ⊆ (V − Σ)× V∗

It means that R = {(A , u) : A ∈ (V − Σ) and u ∈ V∗}

where A is a nonterminal and u ∈ V∗ is a string that
contains some terminals and nonterminals

We write

A →G u or A → u for any (A , u) ∈ R



Context-free Grammar Definition

Given a context-free grammar

G = (V , Σ, R , S)

Definition

For any u, v ∈ V∗, we define a one step derivation

u ⇒
G

v

of v from u as follows

⇒G if and only if there are A , x, y, v ′ ∈ V∗ such that

1. A ∈ V − Σ

2. u = xAy and v = xv ′y

2. A → v’ for certain r ∈ R



Context-free Grammar Definition

One step derivation in plain words:

u ⇒G v if and only if we obtain v from u by a

direct application of one rule r ∈ R

Definition of the language L(G) generated by G

L(G) = {w ∈ Σ∗ : S ∗⇒
G

w}

where ⇒∗
G is a transitive, reflexive closure of ⇒G



Context-free and Regular Languages

Given a derivation of w ∈ Σ∗ in G

S ∗⇒
G

w

We write is in detail (by definition of ⇒∗
G ) as

S ⇒
G

w1 ⇒
G

w2 ⇒
G
. . .⇒

G
w for wi ∈ V∗, w ∈ Σ

or when G is known as

S ⇒ w1 ⇒ w2 ⇒ . . . ⇒ w

or just as a sequence of words

S, w1, w2, . . . w for wi ∈ V∗, w ∈ Σ∗



Context-free Grammar Example

Example

Consider a grammar G = (V , Σ, R , S)

for V = {S, a, b}, Σ = {a, b} and

R = {r1 : S → aSb , r2 : S → e}
Here are some derivations in G

D1 S ⇒ e so we have that

e ∈ L(G)

D2 S ⇒r1 aSb ⇒r1 aaSbb ⇒r2 aabb

or we just write the derivation as

S, aSb , aaSbb , aabb

and we have that
aabb ∈ L(G)



Context-free Languages

D3 S ⇒r1 aSb ⇒r1 aaSbb ⇒r1 aaaSbbb ⇒r2 aaabbb

or we also write the derivation as

S, aSb , aaSbb , aaaSbbb , aaabbb

and we have that
a3b3 ∈ L(G)

We prove, by induction on the length of derivation that

L(G) = {anbn : n ≥ 0}



Context-free and Regular Languages

Definition

A language L is a context-free language if and only if there is

a context-free grammar G such that

L = L(G)

We have just proved

Fact 1

The language L = {anbn : n ≥ 0} is context-free



Context-free and Regular Languages

Observe that we also proved that the language

L = {anbn : n ≥ 0}

is not regular

Denote by RL the class of all regular languages and by

CFL the class of all contex-free languages



Context-free and Regular Languages

Hence we have proved

Fact 2 RL , CFL

Our next GOAL will be to prove the following

Theorem

The the class of all regular languages is a proper subset of

the class of all contex-free languages, i.e.

RL ⊂ CFL



Exercises

Exercise 1

Show that the regular language L = {a∗ : a ∈ Σ} is
context-free

Proof By definition of context-free language we have to
construct a CF grammar G such that

L = L(G) i.e L(G) = {a∗ : a ∈ Σ}

Here is the grammar G = (V , Σ, R , S)

for V = {S, a}, Σ = {a} and

R = { S → aS, S → e}
We write rules of R in a shorter way as

R = { S → aS | e}



Exercises

Here is a formal derivation in G:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaa

or written as a sequence of words

S, aS, aaS, aaaS, aa

and we have
aaaa ∈ L(G)

We prove, by induction on the length of derivation that

L(G) = {a∗ : a ∈ Σ}



Exercises

Exercise 2

Show that the NOT regular language

L = {wwR : w ∈ {a, b}∗}

is context-free



Exercises

We construct a context-free grammar G such that

L(G) = {wwR : w ∈ {a, b}∗}
as G = (V ,Σ,R ,S)

where V = {a, b ,S}, Σ = {a, b}

R = {S → aSa |bSb | e}

Derivation example:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbbba

or written as S, aSa, abSba, abbSbba, abbbba

We prove, by induction on the length of derivation that

wwR ∈ L(G) for any w ∈ Σ∗



Exercises

Remark

The set of rules

R = {S → aSa | aSb |c}

defines a grammar G with the language

L(G) = {wcwR : w ∈ {a, b}∗}

Exercise 3

Show that the NOT regular language

L = {w ∈ {a, b}∗ : w = wR}

is context-free



Exercises

We construct a context-free grammar G such that

L(G) = {w ∈ {a, b}∗ : w = wR}

as follows

G = (V ,Σ,R ,S), where V = {a, b ,S}, Σ = {a, b}

R = {S → aSa |bSb | a | b | e}

Derivation example: S ⇒ aSa ⇒ abSba ⇒ ababa

We check

(ababa)R = ((aba)(ba))R = (ba)R((ab)a)R = aba(ab)R = ababa

We used Property: for any x, y ∈ Σ∗, (xy)R = yRxR and

Definition: for any x ∈ Σ∗, a ∈ Σ, eR = e, (xa)R = axR



Exercises

Grammar correctness justification

Observe that the rules

S → aSa |bSb | e

generate the language (as was proved in Example 2)

L1 = {wwR : w ∈ Σ∗}

Adding additional rules S → a | b we get that

L(G) = L1 ∪ {wawR : w ∈ Σ∗} ∪ {wbwR : w ∈ Σ∗}

Hence

w ∈ L(G) iff w = xxR or w = xaxR or w = xbxR



Exercises

Hence

w ∈ L(G) iff w = xxR or w = xaxR or w = xbxR

We show now that in each case w = wR , i.e.

we prove that

L(G) = {w ∈ {a, b}∗ : w = wR}

as follows

Case 1: w = xxR

We evaluate

wR = (xxR)R = (xR)RxR = xxR = w

We used property: (xR)R = x



Exercises

Case 2: w = xaxR

We evaluate

wR = (xaxR)R = ((xa)xR)R = (xR)R(xa)R = xaxR = w

We used properties (xR)R = x and (xy)R = yRxR

Case 3: w = xbxR

We evaluate

wR = (xbxR)R = ((xb)xR)R = (xR)R(xb)R = xbxR = w

This ends the proof



Regular Grammars

Definition

A context-free grammar

G = (V , Σ, R , S)

is called regular, or right-linear if and only if

R ⊆ (V − Σ)× Σ∗((V − Σ) ∪ {e})



Regular Grammars

That is, a regular (right-linear) grammar is a context-free

grammar such that the right-hand side of every rule

contains at most one nonterminal, which if present, must be

the last symbol in the string

The rules must have a form

A → wB , A → w for any A ,B ∈ V − Σ, w ∈ Σ∗

Remark

We didn’t say A , B!



Regular and Context-free Languages

Exercise 4

Given a regular grammar G = (V ,Σ,R ,S), where

V = {a, b ,S,A}, Σ = {a, b}

R = {S → aS |A |e, A → abA |a |b}

1. Construct a finite automaton M, such that L(G) = L(M)

Solution

We construct a non-deterministic finite automaton

M = (K , Σ, ∆, s, F) for

K = (V − Σ) ∪ {f}, Σ = Σ, s = S, F = {f}

∆ = {(S, a,S), (S, e,A), (S, e, f), (A , ab ,A), (A , a, f), (A , b , f)}



Regular and Context-free Languages

Exercise 4

2. Write a computation of M that leads to the acceptance
of the string aaaababa

Compare it with a derivation of the same string in G

Solution

The accepting computation of M is:

(S, aaaababa) ⊢M (S, aaababa) ⊢M (S, aababa) ⊢M (S, ababa)

⊢M (A , ababa) ⊢M (A , aba) ⊢M (A , a) ⊢M (f , e)

Corresponding derivation in G is:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaA ⇒ aaaabA

⇒ aaaababA ⇒ aaaababa



Regular and Context-free Languages

We are going to prove the following theorem that establishes

the relationship between the Regular Languages

and Regular Grammars

L-G Theorem

Language L is regular if and only if

there exists a regular grammar G such that

L = L(G)



Regular and Context-free Languages

By definition, any regular grammar is context free and

hence generates a context-free language and we get that

R - CF Theorem

The the class RL of all regular languages is a proper subset

of the class CFL of all context-free languages, i.e.

RL ⊂ CFL



Proof of L-G Theorem

L-G Theorem
Language L is regular if and only if there exists a regular
grammar G such that

L = L(G)

Proof part 1
Suppose that L is regular; then L is accepted by a
deterministic finite automaton

M = (K , Σ, δ, s, F)

We construct a regular grammar G as follows

G = (V , Σ, R , S)

for V = Σ ∪ K , S = s

R = {q → ap : δ(q, a) = p} ∪ {q → e : q ∈ F}



Proof of L-G Theorem

We need now to show that L(M) = L(G)

Observe that the rules of G are designed to mimic exactly
the moves of M

For any σ1, . . . , σn ∈ Σ and p0, . . . , pn ∈ K

(p0, σ1, . . . , σn) ⊢M (p1, σ2, . . . , σn) ⊢M . . .⊢M (pn, e)

if and only if

p0
∗⇒
G
σ1p1

∗⇒
G
σ1σ2p2 . . .

∗⇒
G
σ1σ2 . . . σnpn

This is because

δ(q, a) = p if and only if q → ap



Proof of L-G Theorem

We prove now that L(M) ⊆ L(G)

Suppose that w ∈ L(M)

Then for some p ∈ F ,

(s, w) ⊢M
∗ (p, e)

but
δ(q, a) = p if and only if q → ap

is
S ∗⇒

G
w

so w ∈ L(G)



Proof of L-G Theorem

We prove now that L(G) ⊆ L(M)

Suppose that w ∈ L(G)

Then
S ∗⇒

G
w that is s ∗⇒

G
w

The rule used at the last step of the derivation must have
been of the form

p → e for some p ∈ F

and so
s ∗⇒

G
wp ⇒

G
w

But then
(s, w) ⊢M

∗ (p, e)

and so w ∈ L(M) and

L(M) = L(G)



Proof of L-G Theorem

Proof part 2

Let now G be any regular grammar

G = (V , Σ, R , S)

We define a nondeterministic automaton M such that

L(M) = L(G)

as follows
M = (K , Σ, ∆, s, F)

K = (V − Σ) ∪ {f} where f is a new element

s = S, F = {f}



Proof of L-G Theorem

The set ∆ of transitions is

∆ = {(A ,w,B) : A → wB ∈ R; A ,B ∈ V − Σ, w ∈ Σ∗}

∪{(A ,w, f) : A → w ∈ R; A ,B ∈ V − Σ, w ∈ Σ∗}

Once again, derivations are mimicked by the moves, i.e, for
any

A1, . . . ,An ∈ V − Σ, w1, . . .wn ∈ Σ∗

A1 ⇒G w1A2 ⇒G · · · ⇒G w1 . . .wn−1An ⇒G w1 . . .wn

if and only if

(A1,w1 . . .wn) ⊢M (A2,w2 . . .wn) ⊢M . . . ⊢M (An,wn) ⊢M (f , e)



Exercises

Exercise 1

Given M defined by the diagram below, construct a regular
grammar G, such that L(M) = L(G)

We follow the proof of L-G Theorem and we ”read” the rules
of G as follows

R = {q0 → aq1 |bq1, q1 → aq1 |bq1, q0 → e, q1 → e}

We re-write the rules using a standard notation for
nonterminals as

R = {S → aA | bA , A → aA | bA , S → e, A → e}



Exercises

Exercise 2
Given M defined by the diagram below, construct a regular
grammar G, such that L(M) = L(G)

We ”read” the rules of G as follows

R = {q0 → aq1 |bq2, q1 → aq1 |bq2 | e, q2 → aq2 |bq0 | e}

We re-write the rules using a standard notation for
nonterminals as

R = {S → aA |bB , A → aa |bB | e, B → aB |bS | e}



Exercises

Exercise 3

Given a grammar G defined by the set of rules, construct a
finite automata G, such that L(M) = L(G)

Here is a picture depicting the pattern of such constractions



Exercises

Exercise 4
Given a grammar G defined by the set of rules, construct a
finite automata G, such that L(M) = L(G)
Here is a picture depicting the pattern of such contractions

Exercise 5 PROVE the second part of L-G Theorem



Simple Questions

Justify if True or False

Q1 The set of terminals in a context free grammar G is a
subset of the alphabet of G

Q2 The set of terminals and non- terminals in a context free
grammar G form the alphabet of G

Q3 The set of non-terminals is always non- empty

Q4 The set of terminals is always non- empty



Simple Questions

Justify if True or False

Q1 The set of terminals in a context free grammar G is a
subset of the alphabet of G

True By definition: Σ ⊆ V

Q2 The set of terminals and non- terminals in a context free
grammar G form the alphabet of G

True By definition: V = Σ ∪ (V − Σ)



Simple Questions

Justify if True or False

Q3 The set of non-terminals is always non- empty

True By definition: S ∈ V

Q4 The set of terminals is always non- empty

False Σ = ∅ is a finite set



Simple Questions

Justify if True or False

Q5 Let G be a context-free grammar

L(G) = {w ∈ V : S ∗⇒
G

w}

Q6 The language L ⊆ Σ∗ is context-free if and only if

L = L(G)

Q7 A language is context-free if and only if it is accepted by

a context-free grammar



Simple Questions

Justify if True or False

Q5 Let G be a context-free grammar

L(G) = {w ∈ V : S ∗⇒
G

w}

False Should be w ∈ Σ∗

Q6 The language L ⊆ Σ∗ is context-free if and only if L =
L(G)

False Holds only when G is a context -free grammar



Simple Questions

Justify if True or False

Q7 A language is context-free if and only if it is accepted by

a context-free grammar

False Language is generated, not accepted by a grammar

Q8 Any regular language is context-free

True: Regular languages are generated by regular

grammars, that are special case of CF grammars

Q9 Language is regular if and only if is generated by

a regular grammar (right- linear)

True : Theorem proved in class



Simple Questions

Justify if True or False

Q10 L = {w ∈ {a, b}∗ : w = wR} is context-free

True: G with the rules:

S → aSa|bSb|a|b||e is the required grammar

Q11 A regular language is a CF language

True: Regular grammar is a special case of a context-free

grammar


