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CHAPTER 2
PART 4: Languages that are not Regular



Finite Automata and Regular Languages

Short Review

Finite Automata and Regular Languages

Finite Automata CLOSURE THEOREM

Finite Automata and Regular Languages MAIN THEOREM

Regular Languages CLOSURE THEOREM



Automata Closure Theorem

In order to prove the MAIN THEOREM that establishes a
relationship between Finite Automata and Regular languages
proved and used the following

Automata CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is

closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in

the proof we can choose a DFA or a NDFA, as we have
already proved their equivalency



Automata - Languages Main Theorem

Automata - Languages MAIN THEOREM

A language L is regular if and only if it is accepted by a

finite automaton, i.e.

A language L is regular if and only if there is a

finite automaton M, such that

L = L(M)



Regular Languages Closure Theorem

Directly from the the Automata and Regular Languages Main
Theorem and Automata Closure Theorem we get the
following

Regular Languages Closure Theorem

The class of REGULAR languages

is closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection



Regular and non-Regular Languages



Languages that are Not Regular

We know that there are uncountably many and exactly C

of all languages over any alphabet Σ , ∅

We also know that there are only ℵ0, i.e. infinitely countably

many regular languages

It means that we have uncountably many and . exactly C
languages that are not regular

Reminder

A language L ⊆ Σ∗ is regular if and only if there is a regular

expression r ∈ R that represents L, i.e. such that

L = L(r)



Regular or not Regular Languages

We look now at some simple examples of languages that

might be, or not be regular

E1 The language L1 = a∗b∗ is regular because is

defined by a regular expression

E2 The language

L2 = {anbn : n ≥ 0} ⊆ L1

is not regular

We will prove prove it using a very important theorem to be

proved that is called Pumping Lemma



Regular or not Regular Languages

Intuitively we can see that

L2 = {anbn : n ≥ 0}

can’t be regular as we can’t construct a finite automaton

accepting it

Such automaton would need to have something like a

memory to store, count and compare the number of a’s with

the number of b’s



Regular or not Regular Languages

We will define and study in Chapter 3 a new class of

automata that would accommodate the ”memory” problem

They are called Push Down Automata

We will prove that they accept a larger class of languages,

called context free languages



Regular or not Regular Languages

E3 The language L3 = a∗ is regular because is defined

by a regular expression

E4 The language L4 = {an : n ≥ 0} is regular because

in fact L3 = L4

E5 The language L4 = {an : n ∈ Prime} is not regular

We will prove it using Pumping Lemma



Regular or not Regular Languages

E6 The language L6 = {an : n ∈ EVEN} is regular

because in fact L6 = (aa)∗

E7 The language

L7 = {w ∈ {a, b}∗ : w has an equal number of a’ s and b’s }

is not regular

Proof

Assume that L7 is regular

We know that L1 = a∗b∗ is regular

Hence the language L = L7 ∩ L1 is regular, as the class of

regular languages is closed under intersection

But obviously, L = {anbn : n ∈ N} and was proved to

be not regular

This contradiction proves that L7 is not regular



Regular aor not Regular Languages

E8 The language L8 = {wwR : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E9 The language L9 = {ww : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma



Regular or not Regular Languages

E10 The language L10 = {wcw : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E11 The language L11 = {ww : w ∈ {a, b}∗}

where w stands for w with each occurrence of a is
replaced by b, and vice versa

is not regular

We prove it using Pumping Lemma



Regular or not Regular Languages

E12 The language

L12 = {xy ∈ Σ∗ : x ∈ L and y < L for any regular L ⊆ Σ∗}

is regular

Proof Observe that L12 = L ◦ L where L denotes

a complement of L, i.e.

L = {w ∈ Σ∗ : w ∈ Σ∗ − L}

L is regular, and so is L , and L12 = L ◦ L is regular by the

following, already already proved theorem

Closure Theorem The class of languages accepted by Finite

Automata FA is closed under ∪,∩,−, ◦,∗



Regular or not Regular Languages

E13 The language

L13 = {wR : w ∈ L and L is regular }

is regular

Definition For any language L we call the language

LR = {wR : w ∈ L}

the reverse language of L

The E13 says that the following holds

Fact

For any regular language L, its reverse language LR

is regular



Regular or not Regular Languages

Fact

For any regular language L, its reverse language LR is
regular

Proof Let M = (K , Σ, ∆, s, F) be such that L = L(M)

The reverse language LR is accepted by a finite automata

MR = (K ∪ s′, Σ, ∆′, s′, F = {s})

where s′ < K and

∆′ = {(r ,w, p) : (p,w, r) ∈ ∆, w ∈ Σ∗} ∪ {(s′, e, q) : q ∈ F}

We used the Lecture Definition of M



Regular and NOT Regular Languages

Proof of E13 pictures

Diagram of M

Diagram of MR



Regular and NOT Regular Languages

E14

Any finite language is regular

Proof Let L ⊆ Σ∗ be a finite language , i.e.

L = ∅ or L = {w1,w2, . . .wn} for n > 0}

We construct the finite automata M such that

L(M) = L = {w1} ∪ {w2} ∪ . . . {wn} = Lw1 ∪ · · · ∪ Lwn

as M = Mw1 ∪ · · · ∪Mwn ∪M∅
where



Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ



Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ

Proof

For any x ∈ Σ, xR = x

Σ is a finite set, hence

L = {xyx : x, y ∈ Σ}

is also finite and we just proved that any finite language is
regular



Exercises

Exercise 2

Show that the class of regular languages is not closed with
respect to subset relation.

Exercise 3

Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?



Exercises

Exercise 2

Show that the class of regular languages is not closed with
respect to subset relation.

Solution

Consider two languages

L1 = {anbn : n ∈ N} and L2 = a∗b∗

Obviously, L1 ⊆ L2 and L1 is a non-regular subset of a
regular L2

Exercise 3

Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?

Solution

YES, it is because the class of regular languages is closed
under ∩



Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?



Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?

Solution

NO, it doesn’t. Take the following L1, L2

L1 = {anbn : n ∈ N} and L2 = {an : n ∈ Prime}

The language L1 ∩ L2 = ∅ is a regular language none of
L1, L2 is regular



Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ



Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ

Solution

Take a case of x = e ∈ Σ∗

We get a language

L1 = {eyeR : e, y ∈ Σ∗} ⊆ L

and of course L1 = Σ∗ and so Σ∗ ⊆ L ⊆ Σ∗

Hence L = Σ∗ and Σ∗ is regular

This proves that L is regular



Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular



Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular

Solution

Observe that L1 = L ◦ (Σ∗ − L)

L is regular, hence (Σ∗ − L) is regular (closure under
complement), and so is L1 by closure under concatenation



Pumping Lemma on Tests

Read Pumping Lemma statement and information about its
role - you need to know it for Midterm or Final

The proof of the Pumping Lemma and its applications may be
on the Final



Review Questions



Review Questions

Write SHORT answers

Q1

For any language L ⊆ Σ∗, Σ , ∅ there is a deterministic
automata M, such that L = L(M)

Q2

Any regular language has a finite representation.

Q3

Any finite language is regular

Q4

Given L1, L2 languages over Σ, then
((L1 ∩ (Σ∗ − L2)) ∪ L2)L1 is a regular regular language



Review Questions

SHORT answers
Q1
For any language L ⊆ Σ∗, Σ , ∅ there is a deterministic
automata M, such that L = L(M)

True only when L is regular
Q2
Any regular language has a finite representation.
True by definition of regular language and the fact that regular
expression is a finite string
Q3
Any finite language is regular
True as we proved it
Q4
Given L1, L2 languages over Σ, then
((L1 ∩ (Σ∗ − L2)) ∪ L2)L1 is a regular regular language
True only when both are regular languages



Review Questions for Quiz

Write SHORT answers

Q5

For any finite automata M

L(M) =
⋃
{R(1, j, n) : qj ∈ F}

Q6

Σ in any Generalized Finite Automaton includes some
regular expressions

Q7

Pumping Lemma says that we can always prove that a
language is not regular

Q8

L = {ancn : n ≥ 0} is regular



Review Questions

SHORT answers

Q5

For any finite automata M

L(M) =
⋃
{R(1, j, n) : qj ∈ F}

True only when M has n states and they are put in 1-1
sequence and q1 = s

Q6

Σ in any Generalized Finite Automaton includes some
regular expressions

True by definition



Review Questions

Q7

Pumping Lemma says that we can always prove that a
language is not regular

Not True PL serves as a tool for proving that some
languages are not regular

Q8

L = {ancn : n ≥ 0} is regular

Not True we proved by PL that it is not regular



PUMPING LEMMA



Pumping Lemma

Pumping Lemma is one of a general class of Theorems
called pumping theorems

They are called pumping theorems because they assert the
existence of certain points in certain strings where a substring
can be repeatedly inserted (pumping) without affecting the
acceptability of the string

We present here two versions of the Pumping Lemma

First is the Lecture Notes version from the first edition of the
Book and the second is the Book version (page 88) from the
new edition

The Book version is a slight generalization of the Lecture
version



Pumping Lemma 1

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Observe that the Pumping Lemma 1 says that in an infinite
regular language L, there is a word w ∈ L that can be
re-written as w = xyz in such a way that y , e and we
”pump” the part y any number of times and still have that
such obtained word is still in L, i.e. that xynz ∈ L for all n ≥ 0

Hence the name Pumping Lemma



Role of Pumping Lemma

We use the Pumping Lemma as a tool to carry proofs that
some languages are not regular

Proof METHOD

Given an infinite language L we want to PROVE it to be NOT
REGULAR

We proceed as follows

1. We assume that L is REGULAR

2.Hence by Pumping Lemma we get that there is a word
w ∈ L that can be re-written as w = xyz, y , e, and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that the
language L is not regular



Proof of Pumping Lemma 1

Pumping Lemma 1
Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Proof
Since L is regular, L is accepted by a deterministic finite
automaton

M = (K , Σ, δ, s, F)

Suppose that M has n states, i.e. |K | = n for n ≥ 1
Since L is infinite, M accepts some string w ∈ L of length
n or greater, i.e.
there is w ∈ L such that lw | = k > n and

w = σ1σ2 . . . σk for σi ∈ Σ, 1 = 1, 2, . . . , k



Proof of Pumping Lemma 1

Consider a computation of w = σ1σ2 . . . σk ∈ L :

(q0, σ1σ2 . . . σk ) ⊢M (q1, σ2 . . . σk ), ⊢M

. . . . . . ⊢M (qk−1, σk ), ⊢M (qk , e)

where q0 is the initial state s of M and qk is a final state of M

Since lw | = k > n and M has only n states, by Pigeon Hole
Principle we have that

there exist i and j, 0 ≤ i < j ≤ k , such that qi = qj

That is, the string σi+1 . . . σj is nonempty since i + 1 ≤ j
and drives M from state qi back to state qi

But then this string σi+1 . . . σj could be removed from w, or
we could insert any number of its repetitions just after just
after σj and M would still accept such string



Proof of Pumping Lemma 1

We just showed by Pigeon Hole Principle we have that M
that accepts w = σ1σ2 . . . σk ∈ L also accepts the string

σ1σ2 . . . σi(σi+1 . . . σj)
nσj+1 . . . σk for each n ≥ 0

Observe that σi+1 . . . σj is non-empty string since i + 1 ≤ j

That means that there exist strings

x = σ1σ2 . . . σi, y = σi+1 . . . σj, z = σj+1 . . . σk for y , e

such that

y , e and xynz ∈ L for all n ≥ 0



Proof of Pumping Lemma 1

The computation of M that accepts xynz is as follows

(qo , xynz) ⊢M∗ (qi , ynz )⊢M
∗ (qi , yn−1z )

⊢M
∗ . . . ⊢M

∗ (qi , yn−1z )⊢M
∗(qk , e)

This ends the proof

Observe that the proof of the holds for any word w ∈ L with
|w | ≥ n , where n is the number of states of deterministic M
that accepts L

We get hence another version of the Pumping Lemma 1



Pumping Lemma 2

Pumping Lemma 2

Let L be an infinite regular language over Σ , ∅

Then there is an integer n ≥ 1 such that for any word
w ∈ L with lengths greater then n, i.e. |w | ≥ n there are
x, y, z ∈ Σ∗ such that w can be re-written as w = xyz and

y , e and xy iz ∈ L for all naturalnumbers i ≥ 0

Proof

Since L is regular, it is accepted by a deterministic finite
automaton M that has n ≥ 1 states

This is our integer n ≥ 1

Let w be any word in L such that |w | ≥ n

Such words exist as L in infinite

The rest of the proof exactly the same as in case of Pumping
Lemma 1



Pumping Lemma

We write the Pumping Lemma 2 symbolically using
quantifiers symbols as follows

Pumping Lemma 2

Let L be an infinite regular language over Σ , ∅

Then the following holds

∃n≥1∀w∈L(|w | ≥ n ⇒

∃x,y,z∈Σ∗ (w = xyz ∩ y , e ∩ ∀i≥0(xy iz ∈ L)))



Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the
Pumping Lemma 2

It applies to any any regular language, not to an infinite
regular language, as the Pumping Lemmas 1, 2



Book Pumping Lemma

Book Pumping Lemma

Let L be a regular language over Σ , ∅

Then there is an integer n ≥ 1 such that any word w ∈ L
with |w | ≥ n can be re-written as w = xyz such that

y , e, |xy | ≤ n, x, y, z ∈ Σ∗ and xy iz ∈ L for all i ≥ 0

Proof The proof goes exactly as in the case of Pumping
Lemmas 1, 2

Notice that from the proof of Pumping Lemma 1

x = σ1σ2 . . . σi , z = σj+1 . . . σk } for 0 ≤ i < j ≤ n

and so by definition |xy | ≤ n for n being the number of
states of the deterministic M that accepts L



Book Pumping Lemma

We write the Pumping Lemma 2 symbolically using
quantifiers symbols as follows

Book Pumping Lemma

Let L be a regular language over Σ , ∅

Then the following holds

∃n≥1∀w∈L ( |w | ≥ n ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)) )

A natural question arises:

WHY the Book Pumping Lemma applies when L is a
regular finite language?

When L is a regular finite language the Lecture Lemmas
do not apply



Book Pumping Lemma

Let’s look at an example of a finite, and hence a regular
language

L = {a, b , ab , bb}

Observe that the condition

∃n≥1∀w∈L ( |w | ≥ n ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)) )

of the Book Pumping Lemma holds because there exists
n = 3 such that the conditions becomes as follows



Book Pumping Lemma

Take n = 3 , or any n ≥ 3 we get statement:

∃n=3∀w∈L ( |w | ≥ 3 ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)) )

Observe that the above is a TRUE statement because the
statement |w | ≥ 3 is FALSE for all w ∈ L = {a, b , ab , bb}

By definition, the implication FALSE⇒ ANYTHING is
always TRUE, hence the whole statement is TRUE



Book Pumping Lemma

The same reasoning applies for any finite (and hence
regular) language

In general, let L be any finite language

Let m = max{|w | : w ∈ L}

Such m exists because L is finite

Take n = m + 1 as the n in the condition of the Book
Pumping Lemma

The Lemma condition is TRUE for all w ∈ L , because the
statement

|w | ≥ m + 1 is FALSE for all w ∈ L

By definition, the implication FALSE⇒ ANYTING is always
TRUE, hence the whole statement is TRUE



Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 1

The language L ⊆ {a, b}∗ defined as follows

L = {anbn : n > 0}

IS NOT regular

Obviously, L i infinite and we use the Lecture version

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0



Pumping Lemma Applications

Reminder: we proceed as follows

1. We assume that L is REGULAR

2. Hence by Pumping Lemma we get that there is a word
w ∈ L that can be re-written as w = xyz for y , e and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that L is
NOT REGULAR



Pumping Lemma Applications

Assume that
L = {ambm : m ≥ 0}

IS REGULAR

L is infinite hence Pumping Lemma 1 applies, so there is a
word w ∈ L that can be re-written as w = xyz for y , e
and xynz ∈ L for all n ≥ 0

There are three possibilities for y , e

We will show that in each case we prove that xynz ∈ L is
impossible (contradiction)



Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

We have to consider the following cases

Case 1

y consists entirely of a’s

Case 2

y consists entirely of b’s

Case 3

y contains both some a’s followed by some b’s

We will show that in each case assumption that xynz ∈ L for
all n leads to CONTRADICTION



Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

Case 1: y consists entirely of a’s

So x must consists entirely of a’s only and z must consists
of some a’s followed by some b’s

Remember that only we must have that y , e

We have the following situation

x = ap for p ≥ 0 as x can be empty

y = aq for q > 0 as y must be nonempty

z = arbs for r ≥ 0, s > 0 as we must have some b’s



Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

ap(aq)narbs = ap+nq+rbs ∈ L

for all p, q, n, r, s such that the following conditions hold

C1: p ≥ 0, q > 0, n ≥ 0, r ≥ 0, s > 0

By definition of L

ap+nq+rbs ∈ L iff [p + nq + r = s

Take case: p = 0, r = 0, q > 0, n = 0

We get s = 0 CONTRADICTION with C1: s > 0



Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 2: y consists of b’s only

So x must consists of some a’s followed by some b’s and z
must have only b’s, possibly none

We have the following situation

x = apb r for p > 0 as y has at least one b and r ≥ 0

y = bq for q > 0 as y must be nonempty

z = bs for s ≥ 0



Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

apb r(bq)nbs = apb r+nq+r ∈ L

for all p, q, n, r, s such that the following conditions hold

C2: p > 0, r ≥ 0 q > 0, n ≥ 0, s ≥ 0

By definition of L

apb r+nq+r ∈ L iff [p = r + qn + s

Take case: r = 0, n = 0, q > 0

We get p = 0 CONTRADICTION with C2: p > 0



Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 3: y contains both a’s and a’s

So y = apb r for p > 0 and r > 0

Case y = b rap is impossible

Take case: y = ab , x = e, z = e and n = 2

By Pumping Lemma we get that y2 ∈ L

But this is a CONTRADICTION with y2 = abab < L

We covered all cases and it ends the proof



Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 2

The language L ⊆ {a}∗ defined as follows

L = {an : n ∈ Prime}

IS NOT regular

Obviously, L i infinite and we use the Lecture version

Proof

Assume that L is regular, hence as L is infinite, so there is a
word w ∈ L that can be re-written as w = xyz for y , e
and xynz ∈ L for all n ≥ 0

Consider w = xyz ∈ L , i.e. xyz = am for some m > 0 and
m ∈ Prime



Pumping Lemma Applications

Then

x = ap , y = aq, z = ar for p ≥ 0, q > 0, r ≥ 0

The condition xynz ∈ L for all n ≥ 0 becomes as follows

ap(aq)nar = ap+nq+r ∈ L

It means that for all n, p, q, r the following condition hold

C n ≥ 0, p ≥ 0, q > 0, r ≥ 0, and p + nq + r ∈ Prime

But this is IMPOSSIBLE



Pumping Lemma Applications

Take n = p + 2q + r + 2 and evaluate:

p + nq + r = p + (p + 2q + r + 2)q + r =

p(1 + q) + 2q(q + 1) + r(q + 1) =(q + 1)(p + 2q + r)

By the above and the condition C we get that

p + nq + r ∈ Prime and p + nq + r = (q + 1)(p + 2q + r)

and both factors are natural numbers greater than 1 what is a
CONTRADICTION

This ends the proof


