cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
CHAPTER 2
FINITE AUTOMATA

4. Languages that are Not Regular
5. State Minimization
6. Algorithmic Aspects of Finite Automata
CHAPTER 2
PART 4: Languages that are Not Regular
Languages That are Not Regular

We know that there are uncountably many, i.e. exactly \mathcal{C} languages over any alphabet $\Sigma \neq \emptyset$.

We also know that there are only \aleph_0, i.e. infinitely countably many regular languages.

It means that we have \mathcal{C} languages that ARE NOT regular.

Reminder

A language $L \subseteq \Sigma^*$ is regular iff there is a regular expression $r \in \mathcal{R}$ that represents L, i.e. such that

$$L = \mathcal{L}(r)$$
Regular and NOT Regular Languages

Let’s look at some simple examples of languages that might be, or not be regular

E1
The language

\[L_1 = a^* b^* \]

is regular because is defined by a regular expression

E2
The language

\[L_2 = \{ a^n b^n : n \geq 0 \} \subseteq L_1 \]

is NOT regular

We will prove prove it using a very important Theorem (to be proved) called **PUMPING LEMMA**
Regular and NOT Regular Languages

Intuitively we can see that

$$L_2 = \{ a^n b^n : n \geq 0 \}$$

can’t be regular as we can’t construct a finite automaton accepting it

Such automaton would need to have something like a memory to store, count and compare the number of a’s with the number of b’s

We will define and study (Chapter 3) a new class of automata that would accommodate the ”memory” problem

They are called PUSH DOWN Automata

We will prove that they accept a larger class of languages, called context free languages
Regular and NOT Regular Languages

E3 The language

\[L_3 = a^* \]

is regular because is defined by a regular expression

E4 The language

\[L_4 = \{a^n : n \geq 0\} \]

is regular because in fact \(L_3 = L_4 \)

E5 The language

\[L_4 = \{a^n : n \in \text{Prime}\} \]

is NOT regular

We will prove it using PUMPING LEMMA
Regular and NOT Regular Languages

E6 The language

$$L_6 = \{a^n : n \in \text{EVEN}\}$$

is regular because in fact $$L_6 = (aa)^*$$

E7 The language

$$L_7 = \{w \in \{a, b\}^* : w \text{ has an equal number of } a's \text{ and } b's\}$$

is NOT regular

Proof

Assume that $$L_7$$ is regular

We know that $$L_1 = a^*b^*$$ is regular

Hence the language $$L = L_7 \cap L_1$$ is regular, as the class of regular languages is closed under intersection

But obviously, $$L = \{a^n b^n : n \in \mathbb{N}\}$$ which was proved to be NOT regular

This contradiction proves that $$L_7$$ is NOT regular
Regular and NOT Regular Languages

E8 The language

\[L_8 = \{ ww^R : \ w \in \{a, b\}^* \} \]

is NOT regular
We prove it by PUMPING LEMMA

E9 The language

\[L_9 = \{ ww : \ w \in \{a, b\}^* \} \]

is NOT regular
We prove it by PUMPING LEMMA

E10 The language

\[L_{10} = \{ wcw : \ w \in \{a, b\}^* \} \]

is NOT regular
We prove it by PUMPING LEMMA
The language \(L_{11} = \{ w\bar{w} : \ w \in \{a, b\}^* \} \)

where \(\bar{w} \) stands for \(w \) with each occurrence of \(a \) is replaced by \(b \), and vice versa

is NOT regular

We prove it by PUMPING LEMMA
Regular and NOT Regular Languages

E12 The language

\[L_{12} = \{ xy \in \Sigma^* : \ x \in L \text{ and } y \notin L \ \text{for any REGULAR } L \subseteq \Sigma^* \} \]

is regular

Proof

Observe that \(L_{12} = L \circ \overline{L} \) where \(\overline{L} \) denotes a complement of \(L \), i.e.

\[\overline{L} = \{ w \in \Sigma^* : \ w \in \Sigma^* - L \} \]

\(L \) is regular, and so is \(\overline{L} \), and \(L_{12} = L \circ \overline{L} \) by the the following **Closure Theorem**

Closure Theorem The class of languages accepted by Finite Automata (FA) is closed under \(\cup, \cap, -, \circ, ^* \)
Regular and NOT Regular Languages

E13 The language

\[L_{13} = \{ w^R : w \in L \text{ and } L \text{ is regular} \} \]

is regular

Definition For any language \(L \) we call the language

\[L_R = \{ w^R : w \in L \} \]

the reverse language of \(L \)

The **E13** says that the following holds

Fact For any regular language \(L \), its reverse language \(L^R \) is regular
Regular and NOT Regular Languages

Fact
For any regular language \(L \), its reverse language \(L^R \) is regular

Proof Let \(M = (K, \Sigma, \Delta, s, F) \) be such that \(L = L(M) \)
The reverse language \(L^R \) is accepted by a finite automata

\[
M^R = (K \cup s', \Sigma, \Delta', s', F = \{s\})
\]

where \(s' \not\in K \) and

\[
\Delta' = \{(r, w, p) : (p, w, r) \in \Delta, w \in \Sigma^*\} \cup \{(s', e, q) : q \in F\}
\]

We used the Lecture Definition of \(M \)
Regular and NOT Regular Languages

Proof of **E13** pictures

Diagram of M

![Diagram of M](image)

Diagram of M^R

![Diagram of M^R](image)
Any finite language is regular

Proof Let $L \subseteq \Sigma^*$ be a finite language, i.e.

$$L = \emptyset \text{ or } L = \{w_1, w_2, \ldots, w_n\} \text{ for } n > 0$$

We construct the finite automata M such that

$$L(M) = L = \{w_1\} \cup \{w_2\} \cup \ldots \cup \{w_n\} = L_{w_1} \cup \ldots \cup L_{w_n}$$

as $M = M_{w_1} \cup \ldots \cup M_{w_n} \cup M_{\emptyset}$

where
Exercises

Exercise 1
Show that the language

\[L = \{ x y x^R : \ x, y \in \Sigma \} \]

is regular for any \(\Sigma \)
Exercises

Exercise 1

Show that the language

\[L = \{ x y x^R : \ x, y \in \Sigma \} \]

is regular for any \(\Sigma \)

Proof

For any \(x \in \Sigma, x^R = x \)

\(\Sigma \) is a finite set, hence

\[L = \{ x y x : \ x, y \in \Sigma \} \]

is also finite and we just proved that any finite language is regular
Exercises

Exercise 2
Show that the class of regular languages is not closed with respect to subset relation.

Exercise 3
Given L_1, L_2 regular languages, is $L_1 \cap L_2$ also a regular language?
Exercises

Exercise 2
Show that the class of regular languages is not closed with respect to subset relation.

Solution
Consider two languages

\[L_1 = \{ a^n b^n : n \in \mathbb{N} \} \quad \text{and} \quad L_2 = a^* b^* \]

Obviously, \(L_1 \subseteq L_2 \) and \(L_1 \) is a non-regular subset of a regular \(L_2 \)

Exercise 3
Given \(L_1, L_2 \) regular languages, is \(L_1 \cap L_2 \) also a regular language?

Solution
YES, it is because the class of regular languages is closed under \(\cap \)
Exercises

Exercise 4
Given L_1, L_2, such that $L_1 \cap L_2$ is a regular language
Does it imply that both languages L_1, L_2 must be regular?
Exercise 4
Given L_1, L_2, such that $L_1 \cap L_2$ is a regular language.
Does it imply that both languages L_1, L_2 must be regular?

Solution

NO, it doesn’t. Take the following L_1, L_2

$$L_1 = \{a^n b^n : n \in \mathbb{N}\} \quad \text{and} \quad L_2 = \{a^n : n \in \text{Prime}\}$$

The language $L_1 \cap L_2 = \emptyset$ is a regular language none of L_1, L_2 is regular.
Exercises

Exercise 5
Show that the language

\[L = \{ xyx^R : \ x, y \in \Sigma^* \} \]

is regular for any \(\Sigma \)
Exercises

Exercise 5

Show that the language

\[L = \{ xyx^R : x, y \in \Sigma^* \} \]

is regular for any \(\Sigma \)

Solution

Take a case of \(x = e \in \Sigma^* \)

We get a language

\[L_1 = \{ eyx^R : e, y \in \Sigma^* \} \subseteq L \]

and of course \(L_1 = \Sigma^* \) and so \(\Sigma^* \subseteq L \subseteq \Sigma^* \)

Hence \(L = \Sigma^* \) and \(\Sigma^* \) is regular

This proves that \(L \) is regular
Exercise 6

Given a regular language $L \subseteq \Sigma^*$

Show that the language

$$L_1 = \{ xy \in \Sigma^* : x \in L \text{ and } y \notin L \}$$

is also regular
Exercises

Exercise 6
Given a regular language $L \subseteq \Sigma^*$
Show that the language

$$L_1 = \{ xy \in \Sigma^* : x \in L \text{ and } y \notin L \}$$

is also regular

Solution
Observe that $L_1 = L \circ (\Sigma^* - L)$
L is regular, hence $(\Sigma^* - L)$ is regular (closure under complement), and so is L_1 by closure under concatenation
For quiz 3

Read **Pumping Lemma** statement and information about its role - you need to know it for **Quiz 3**

The **proof** of the **Pumping Lemma** and its applications will not be on the Quiz 3

You will have to know it for **Quiz 4**
Review Questions

Write SHORT answers

Q1
For any language $L \subseteq \Sigma^*$, $\Sigma \neq \emptyset$ there is a deterministic automata M, such that $L = L(M)$

Q2
Any regular language has a finite representation.

Q3
Any finite language is regular

Q4
Given L_1, L_2 languages over Σ, then $((L_1 \cap (\Sigma^* - L_2)) \cup L_2)L_1$ is a regular regular language
Review Questions

SHORT answers

Q1
For any language $L \subseteq \Sigma^*$, $\Sigma \neq \emptyset$ there is a deterministic automata M, such that $L = L(M)$
True only when L is regular

Q2
Any regular language has a finite representation.
True by definition of regular language and the fact that regular expression is a finite string

Q3
Any finite language is regular
True as we proved it

Q4
Given L_1, L_2 languages over Σ, then
$(((L_1 \cap (\Sigma^* - L_2)) \cup L_2)L_1$ is a regular regular language
True only when both are regular languages
Review Questions for Quiz

Write SHORT answers

Q5
For any finite automata M

$$L(M) = \bigcup \{ R(1, j, n) : q_j \in F \}$$

Q6
Σ in any Generalized Finite Automaton includes some regular expressions

Q7
Pumping Lemma says that we can always prove that a language is not regular

Q8
$L = \{ a^n c^n : n \geq 0 \}$ is regular
Review Questions

SHORT answers

Q5
For any finite automata M

$$L(M) = \bigcup \{ R(1, j, n) : q_j \in F \}$$

True only when M has n states and they are put in 1-1 sequence and $q_1 = s$

Q6
Σ in any Generalized Finite Automaton includes some regular expressions

True by definition

Q7
Pumping Lemma says that we can always prove that a language is not regular

Not True PL serves as a tool for proving that some languages are not regular

Q8
$L = \{ a^n c^n : n \geq 0 \}$ is regular
PUMPING LEMMA
Pumping Lemma

Pumping Lemma is one of a general class of Theorems called **pumping theorems**. They are called **pumping theorems** because they assert the existence of certain points in certain strings where a substring can be repeatedly inserted (pumping) without affecting the acceptability of the string.

We present here two versions of the **Pumping Lemma**. First is the **Lecture Notes** version from the first edition of the Book and the second is the **Book** version (page 88) from the new edition.

The Book version is a slight **generalization** of the Lecture version.
Pumping Lemma

Pumping Lemma 1
Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^*$ such that

$$y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0$$

Observe that the Pumping Lemma 1 says that in an infinite regular language L, there is a word $w \in L$ that can be re-written as $w = xyz$ in such a way that $y \neq e$ and we "pump" the part y any number of times and still have that such obtained word is still in L, i.e. that $xy^n z \in L$ for all $n \geq 0$
Hence the name Pumping Lemma
Role of Pumping Lemma

We use the **Pumping Lemma** as a **tool** to carry props that some languages **are not regular**

METHOD

Given an infinite language L we want to PROVE it to be **NOT REGULAR**

We proceed as follows

1. We assume that L is **REGULAR**
2. Hence by **Pumping Lemma** we get that there is a word $w \in L$ that can be **re-written** as $w = xyz$ and $xy^n z \in L$ for all $n \geq 0$
3. We examine the fact $xy^n z \in L$ for all $n \geq 0$
4. If we get a **CONTRACTION** we have proved that L is **NOT REGULAR**
Proof of Pumping Lemma

Pumping Lemma 1
Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^*$ such that

$$y \neq e \quad \text{and} \quad xy^nz \in L \quad \text{for all} \quad n \geq 0$$

Proof
Since L is regular, L is accepted by a deterministic finite automaton

$$M = (K, \Sigma, \delta, s, F)$$

Suppose that M has n states, i.e. $|K| = n$ for $n \geq 1$
Since L is infinite, M accepts some string $w \in L$ of length n or greater, i.e.
there is $w \in L$ such that $|w| = k > n$ and

$$w = \sigma_1\sigma_2 \ldots \sigma_k \quad \text{for} \quad \sigma_j \in \Sigma, \quad 1 = 1, 2, \ldots, k$$
Proof of Pumping Lemma

Consider the computation of M on $w = \sigma_1\sigma_2 \ldots \sigma_k \in L$:

$$(q_0, \sigma_1\sigma_2 \ldots \sigma_k) \rightarrow_M (q_1, \sigma_2 \ldots \sigma_k), \rightarrow_M$$

$$\ldots \ldots \rightarrow_M (q_{k-1}, \sigma_k), \rightarrow_M (q_k, e)$$

where q_0 is the initial state of M and q_k is a final state of M.

Since $|lw| = k > n$ and M has only n states, by Pigeon Hole Principle we have that there exist i and j, $0 \leq i < j \leq k$, such that $q_i = q_j$.

That is, the string $\sigma_{i+1} \ldots \sigma_j$ is nonempty since $i + 1 \leq j$ and drives M from state q_i back to state q_i.

But then this string $\sigma_{i+1} \ldots \sigma_j$ could be removed from w, or we could insert any number of its repetitions just after just after σ_j and M would still accept such string.
Proof of Pumping Lemma

We just showed by Pigeon Hole Principle we have that M that accepts $w = \sigma_1 \sigma_2 \ldots \sigma_k \in L$ also accepts the string

$$\sigma_1 \sigma_2 \ldots \sigma_i (\sigma_{i+1} \ldots \sigma_j)^n \sigma_{j+1} \ldots \sigma_k$$

for each $n \geq 0$

Observe that $\sigma_{i+1} \ldots \sigma_j$ is non-empty string since $i + 1 \leq j$

That means that there exist strings

$x = \sigma_1 \sigma_2 \ldots \sigma_i, \quad y = \sigma_{i+1} \ldots \sigma_j, \quad z = \sigma_{j+1} \ldots \sigma_k$

for $y \neq e$

such that

$y \neq e$ and $xy^n z \in L$ for all $n \geq 0$
Proof of Pumping Lemma

The computation of M that accepts $xy^n z$ is as follows

$$(q_0, xy^n z) \vdash_{M^*} (q_i, y^n z) \vdash_{M^*} (q_i, y^{n-1} z)$$

$$\vdash_{M^*} \ldots \vdash_{M^*} (q_i, y^{n-1} z) \vdash_{M^*} (q_k, e)$$

This ends the proof

Observe that the proof of the holds for for any word $w \in L$ with $|w| \geq n$, where n is the number of states of deterministic M that accepts L

We get hence a bit stronger version of the Pumping Lemma 1
Proof of Pumping Lemma

Pumping Lemma 2
Let \(L \) be an infinite regular language over \(\Sigma \neq \emptyset \)
Then there is an integer \(n \geq 1 \) such that for any word \(w \in L \) with lengths greater then \(n \), i.e. \(|w| \geq n\) there are \(x, y, z \in \Sigma^* \) such that \(w \) can be re-written as \(w = xyz \) and

\[y \neq e \quad \text{and} \quad xy^nz \in L \quad \text{for all} \quad n \geq 0 \]

Proof
Since \(L \) is regular, it is accepted by a deterministic finite automaton \(M \) that has \(n \geq 1 \) states
This is our integer \(n \geq 1 \)
Let \(w \) be any word in \(L \) such that \(|w| \geq n\)
Such words exist as \(L \) in infinite
The rest of the proof exactly the same as in case of Pumping Lemma 1
Pumping Lemma

We write the **Pumping Lemma 2** symbolically using quantifiers symbols as follows:

Pumping Lemma 2

Let \(L \) be an **infinite regular** language over \(\Sigma \neq \emptyset \).

Then the following holds:

\[
\exists n \geq 1 \forall w \in L (|w| \geq n \Rightarrow \\
\exists x, y, z \in \Sigma^* (w = xyz \cap y \neq \varepsilon \cap \forall n \geq 0 (xy^n z \in L)))
\]
Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the Pumping Lemma 2.

It applies to any any regular language, not to an infinite regular language, as the Pumping Lemmas 1, 2.
Book Pumping Lemma

Let L be a regular language over $\Sigma \neq \emptyset$.

Then there is an integer $n \geq 1$ such that any word $w \in L$ with $|w| \geq n$ can be re-written as $w = xyz$ such that

$y \neq e$, $|xy| \leq n$, $x, y, z \in \Sigma^*$ and $xy^iz \in L$ for all $i \geq 0$.

Proof The proof goes exactly as in the case of Pumping Lemmas 1, 2.

Notice that from the proof of Pumping Lemma 1

$$x = \sigma_1\sigma_2\ldots\sigma_i, \quad z = \sigma_{j+1}\ldots\sigma_k$$

for $0 \leq i < j \leq n$

and so by definition $|xy| \leq n$ for n being the number of states of the deterministic M that accepts L.

We write the Pumping Lemma symbolically using quantifiers symbols as follows.

Let L be a regular language over $\Sigma \neq \emptyset$.

Then the following holds:

$$\exists n \geq 1 \forall w \in L \left(|w| \geq n \Rightarrow \exists x, y, z \in \Sigma^* (w = xyz \land y \neq \varepsilon \land |xy| \leq n \land \forall i \geq 0 (xy^iz \in L)) \right)$$

A natural question arises:

WHY the Book Pumping Lemma applies when L is a regular finite language?

When L is a regular finite language the Lecture Lemma does not apply.
Book Pumping Lemma

Let’s look at an example of a finite, and hence a regular language

\[L = \{a, b, ab, bb\} \]

Observe that the condition

\[\exists n \geq 1 \forall w \in L \left(|w| \geq n \implies \exists x, y, z \in \Sigma^* (w = xyz \cap y \neq e \cap |xy| \leq n \cap \forall i \geq 0 (xy^iz \in L)) \right) \]

of the **Book Pumping Lemma** holds because there exists \(n = 3 \) such that the conditions becomes as follows
Book Pumping Lemma

Take \(n = 3 \), or any \(n \geq 3 \) we get statement:

\[
\exists_{n=3} \forall_{w \in L} \left(|w| \geq 3 \Rightarrow \exists_{x,y,z \in \Sigma^*} (w = xyz \land y \neq e \land |xy| \leq n \land \forall_{i \geq 0} (xy^iz \in L)) \right)
\]

Observe that the above is a TRUE statement because the statement \(|w| \geq 3 \) is FALSE for all \(w \in L = \{a, b, ab, bb\} \).

By definition, the implication \(FALSE \Rightarrow (anything) \) is always TRUE, hence the whole statement is TRUE.
The same reasoning applies for any **finite** (and hence regular) language.

In general, let L be any **finite** language.

Let $m = \max \{|w| : w \in L\}$.

Such m **exists** because L is finite.

Take $n = m + 1$ as the n in the condition of the *Book Pumping Lemma*.

The Lemma condition is **TRUE** for all $w \in L$, because the statement $|w| \geq m + 1$ is **FALSE** for all $w \in L$.

By definition, the implication **FALSE** \Rightarrow *(anything)* is always **TRUE**, hence the whole statement is **TRUE**.
Pumping Lemma Applications

Use **Pumping Lemma** to **prove** the following

Fact 1
The language \(L \subseteq \{a, b\}^* \) defined as follows

\[
L = \{a^n b^n : n > 0\}
\]

IS NOT regular

Obviously, \(L \) is infinite and we use the Lecture version

Pumping Lemma 1

Let \(L \) be an infinite regular language over \(\Sigma \neq \emptyset \)

Then **there are** strings \(x, y, z \in \Sigma^* \) such that

\[
y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0
\]
Pumping Lemma Applications

Reminder: we proceed as follows
1. We assume that L is REGULAR
2. Hence by Pumping Lemma we get that there is a word $w \in L$ that can be re-written as $w = xyz$ for $y \neq e$ and $xy^nz \in L$ for all $n \geq 0$
3. We examine the fact $xy^nz \in L$ for all $n \geq 0$
4. If we get a CONTRADICTION we have proved that L is NOT REGULAR
Pumping Lemma Applications

Assume that

\[L = \{ a^m b^m : m \geq 0 \} \]

IS REGULAR

L is infinite hence Pumping Lemma 1 applies, so there is a word \(w \in L \) that can be re-written as \(w = xyz \) for \(y \neq e \) and \(xy^n z \in L \) for all \(n \geq 0 \)

There are three possibilities for \(y \neq e \)

We will show that in each case we prove that \(xy^n z \in L \) is impossible (contradiction)
Pumping Lemma Applications

Consider \(w = xyz \in L \), i.e. \(xyz = a^m b^m \) for some \(m \geq 0 \)

We have to consider the following cases

Case 1

\(y \) consists entirely of \(a \)'s

Case 2

\(y \) consists entirely of \(b \)'s

Case 3

\(y \) contains both some \(a \)'s followed by some \(b \)'s

We will show that in each case assumption that \(xy^n z \in L \) for all \(n \) leads to **CONTRADICTION**
Pumping Lemma Applications

Consider \(w = xyz \in L \), i.e. \(xyz = a^m b^m \) for some \(m \geq 0 \)

Case 1: \(y \) consists entirely of \(a \)'s

So \(x \) **must** consists entirely of \(a \)'s only and \(z \) **must** consists of some \(a \)'s followed by some \(b \)'s

Remember that only we must have that \(y \neq e \)

We have the following situation

\[x = a^p \quad \text{for} \quad p \geq 0 \quad \text{as} \quad x \text{ can be empty} \]

\[y = a^q \quad \text{for} \quad q > 0 \quad \text{as} \quad y \text{ must be nonempty} \]

\[z = a^r b^s \quad \text{for} \quad r \geq 0, \quad s > 0 \quad \text{as we must have some} \quad b \text{'s} \]
Pumping Lemma Applications

The condition \(xy^n z \in L \) for all \(n \geq 0 \) becomes as follows

\[
a^p (a^q)^n a^r b^s = a^{p+nq+r} b^s \in L
\]

for all \(p, q, n, r, s \) such that the following conditions hold

\[\text{C1: } p \geq 0, \quad q > 0, \quad n \geq 0, \quad r \geq 0, \quad s > 0\]

By definition of \(L \)

\[
a^{p+nq+r} b^s \in L \quad \text{iff} \quad [p + nq + r = s]
\]

Take case: \(p = 0, \quad r = 0, \quad q > 0, \quad n = 0 \)

We get \(s = 0 \) CONTRADICTION with \(\text{C1: } s > 0 \)
Pumping Lemma Applications

Consider \(xyz = a^m b^m \) for some \(m \geq 0 \)

Case 2: \(y \) consists of b’s only
So \(x \) **must** consists of some a’s followed by some b’s and \(z \) **must** have only b’s, possibly none

We have the following situation

\[
x = a^p b^r \quad \text{for} \quad p > 0 \quad \text{as} \quad y \quad \text{has at least one b} \quad \text{and} \quad r \geq 0
\]

\[
y = b^q \quad \text{for} \quad q > 0 \quad \text{as} \quad y \quad \text{must be nonempty}
\]

\[
z = b^s \quad \text{for} \quad s \geq 0
\]
Pumping Lemma Applications

The condition \(xy^n z \in L \) for all \(n \geq 0 \) becomes as follows

\[
a^p b^r (b^q)^n b^s = a^p b^{r+qn+r} \in L
\]

for all \(p, q, n, r, s \) such that the following conditions hold

\[C2: \quad p > 0, \quad r \geq 0, \quad q > 0, \quad n \geq 0, \quad s \geq 0 \]

By definition of \(L \)

\[
a^p b^{r+qn+r} \in L \quad \text{iff} \quad [p = r + qn + s]
\]

Take case: \(r = 0, \quad n = 0, \quad q > 0 \)

We get \(p = 0 \quad \text{CONTRADICTION} \quad \text{with} \quad C2: \quad p > 0 \)
Pumping Lemma Applications

Consider \(xyz = a^m b^m \) for some \(m \geq 0 \)

Case 3: \(y \) contains both \(a \)'s and \(a \)'s

So \(y = a^p b^r \) for \(p > 0 \) and \(r > 0 \)

Case \(y = b^r a^p \) is impossible

Take case: \(y = ab, \ x = e, \ z = e \) and \(n = 2 \)

By **Pumping Lemma** we get that \(y^2 \in L \)

But this is a **CONTRADICTION** with \(y^2 = abab \notin L \)

We covered all cases and it **ends the proof**
Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 2
The language \(L \subseteq \{a\}^* \) defined as follows

\[
L = \{a^n : n \in \text{Prime}\}
\]

is NOT regular

Obviously, \(L \) is infinite and we use the Lecture version

Proof
Assume that \(L \) is regular, hence as \(L \) is infinite, so there is a word \(w \in L \) that can be re-written as \(w = xyz \) for \(y \neq e \) and \(xy^nz \in L \) for all \(n \geq 0 \)

Consider \(w = xyz \in L \), i.e. \(xyz = a^m \) for some \(m > 0 \) and \(m \in \text{Prime} \)
Pumping Lemma Applications

Then

\[x = a^p, \quad y = a^q, \quad z = a^r \quad \text{for} \quad p \geq 0, \quad q > 0, \quad r \geq 0 \]

The condition \(xy^n z \in L \) for all \(n \geq 0 \) becomes as follows

\[a^p(a^q)^n a^r = a^{p+aq+r} \in L \]

It means that for all \(n, p, q, r \) the following condition hold

\[n \geq 0, \quad p \geq 0, \quad q > 0, \quad r \geq 0, \quad \text{and} \quad p + nq + r \in \text{Prime} \]

But this is IMPOSSIBLE
Pumping Lemma Applications

Take $n = p + 2q + r + 2$ and evaluate:

$$p + nq + r = p + (p + 2q + r + 2)q + r =$$

$$p(1 + q) + 2q(q + 1) + r(q + 1) = (q + 1)(p + 2q + r)$$

By the above and the condition C we get that

$$p + nq + r \in \text{Prime} \quad \text{and} \quad p + nq + r = (q + 1)(p + 2q + r)$$

and both factors are natural numbers greater than 1 what is a CONTRADICTION

This ends the proof