
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska

LECTURE 7

CHAPTER 2
FINITE AUTOMATA

1. Deterministic Finite Automata DFA

2. Nondeterministic Finite Automata NDFA

3. Finite Automata and Regular Expressions

4. Languages that are Not Regular

5. State Minimization

CHAPTER 2
PART 3: Finite Automata and Regular Expressions

Finite Automata and Regular Expressions

The goal of this part of chapter 2 is to prove a theorem that

establishes a relationship between Finite Automata and

Regular languages, i.e to prove that following

MAIN THEOREM

A language L is regular if and only if it is accepted by a

finite automaton, i.e.

A language L is regular if and only if there is a

finite automaton M, such that

L = L(M)

Closure Theorem

To achieve our goal we first prove the following

CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is

closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in

the proof we can choose a DFA or a NDFA, as we have
already proved their equivalency

Closure Theorem

Remember that languages are sets, so we have the set em[]

operations ∪, ∩, −, defined for any L1, L2 ⊆ Σ∗, i.e the
languages

L = L1 ∪ L2, L = L1 ∩ L2, L = Σ∗ − L1

We also defined the languages specific operations of
concatenation and Kleene’s Star , i.e. the

languages
L = L1 ◦ L2 and L = L1

∗

Closure Under Union

1. The class of languages accepted by Finite Automata (FA)
is closed under union

Proof

Let M1, M2 be two NDFA finite automata

We construct a NDF automaton M, such that

L(M) = L(M1) ∪ L(M2)

Let M1 = (K1, Σ, ∆1, s1, F1) and

M2 = (K2, Σ, ∆2, s2, F2)

Where (we rename the states, if needed)

Σ = Σ1 ∪ Σ2, s1 , s2, K1 ∩ K2 = ∅ F1 ∩ F2 = ∅

Closure Under Union

We picture M, such that L(M) = L(M1) ∪ L(M2) as follows

M goes nondeterministically to M1 or to M2 reading nothing
so we get

w ∈ L(M) if and only if w ∈ M1 or w ∈ M2

and hence
L(M) = L(M1) ∪ L(M2)

Closure Under Union

We define formally

M = M1 ∪M2 = (K , Σ, ∆, s, F)

where

K = K1 ∪ K2 ∪ {s} for s < K1 ∪ K2

s is a new state and

F = F1 ∪ F2, ∆ = ∆1 ∪∆2 ∪ {(s, e, s1), (s, e, s2)}

for s1 - initial state of M1 and

s2 the initial state of M2

Observe that by Mathematical Induction we construct,

for any n ≥ 2 an automaton M = M1 ∪M2 ∪ . . . Mn such that

L(M) = L(M1) ∪ L(M2) ∪ . . . L(Mn)

Closure Under Union

Formal proof

Directly from the definition we get

w ∈ L(M) if and only if

∃q((q ∈ F = F1 ∪ F2) ∩ ((s,w) `M
∗(q, e)) if and only if

∃q(((q ∈ F1) ∪ (q ∈ F2)) ∩ ((s,w) `M
∗(q, e)) if and only if

∃q((q ∈ F1) ∩ ((s,w) `M
∗(q, e)) ∪

∃q((q ∈ F2) ∩ ((s,w) `M
∗(q, e))) if and only if

w ∈ L(M1) ∪ w ∈ L(M2), what proves that

L(M) = L(M1) ∪ L(M2)

We used the following Law of Quantifiers

∃x(A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Examples

Example 1
Diagram of M1 such that L(M1) = aba∗ is

Diagram of M2 such that L(M2) = b∗ab is

We construct M = M1 ∪M2 such that

L(M) = aba∗ ∪ b∗ab = L(M1) ∪ L(M2)

as follows

Examples

Example 1

Diagram of M such that L(M) = aba∗ ∪ b∗ab is

Examples

Example 2
Diagram of M1 such that L(M1) = b∗abc is

Diagram of M2 such that L(M2) = (ab)∗a is

We construct M = M1 ∪M2 such that

L(M) = b∗abc ∪ (ab)∗a = L(M1) ∪ L(M2)

as follows

Examples

Diagram of M such that L(M) = b∗abc ∪ (ab)∗a is

This is a schema diagram

If we need to specify the components we put names on
states on the diagrams

Closure Under Concatenation

2. The class of languages accepted by Finite Automata is
closed under concatenation

Proof

Let M1, M2 be two NDFA

We construct a NDF automaton M, such that

L(M) = L(M1) ◦ L(M2)

Let M1 = (K1, Σ, ∆1, s1, F1) and

M2 = (K2, Σ, ∆2, s2, F2)

Where (if needed we re-name states)

Σ = Σ1 ∪ Σ2, s1 , s2, K1 ∩ K2 = ∅ F1 ∩ F2 = ∅

Closure Under Concatenation

We picture M, such that L(M) = L(M1) ◦ L(M2) as follows

The final states from F1 of M1 become internal states of M

The initial state s2 of M2 becomes an internal state of M

M goes nondeterministically from ex-final states of M1 to the
ex-initial state of M2 reading nothing

Closure Under Concatenation

We define formally

M = M1 ◦M2 = (K , Σ, ∆, s1, F2)

where

K = K1 ∪ K2

s1 of M1 is the initial state

F2 of M2 is the set of final states

∆ = ∆1 ∪∆2 ∪ {(q, e, s2) : for q ∈ F1}

Directly from the definition we get

w ∈ L(M) iff w = w1 ◦ w2 for w1 ∈ L1, w2 ∈ L2

and hence
L(M) = L(M1) ◦ L(M2)

Examples

Diagram of M1 such that L(M1) = aba∗ is

Diagram of M2 such that L(M2) = b∗ab is

We construct M = M1 ◦M2 such that

L(M) = aba∗ ◦ b∗ab = L(M1) ◦ L(M2)

as follows

Examples

Given a language L = aba∗b∗ab

Observe that we can reprezent L as, for example, the
following concatenation

L = ab ◦ a∗ ◦ b∗ ◦ ab

Then we construct ”easy” automata M1, M2, M3, M4 as
follows

Examples

We know, by Mathematical Induction that we can construct,
for any n ≥ 2 an automaton

M = M1 ◦M2 ◦ ◦ Mn

such that
L(M) = L(M1) ◦ . . . ◦ L(Mn)

In our case n=4 and we get

Diagram of M

and L(M) = aba∗b∗ab

Question

Question

Why we have to go be the transactions (q, e, s2) between M1

and M2 while constructing M = M1 ◦M2?

Example of a construction when we can’t SKIP the
transaction (q, e, s2)

Here is a correct construction of M = M1 ◦M2

Observe that abbabab < L(M)

Question

Here is a construction of M′ = M1 ◦M2 without the
transaction (q, e, s2)

Observe that abbabab ∈ L(M′) and abbabab < L(M)

We hence proved that skipping the transactions (q, e, s2)
between M1 and M2 leads to automata accepting different
languages

Closure Under Kleene’s Star

3. The class of languages accepted by Finite Automata is
closed under Kleene’s Star

Proof Let M1 = (K1, Σ, ∆1, s1, F1)

We construct a NDF automaton M = M1
∗, such that

L(M) = L(M1)∗

Here is a diagram

Closure Under Kleene’s Star

Given M1 = (K1, Σ, ∆1, s1, F1)

We define formally

M = M1
∗ = (K , Σ, ∆, s, F)

where

K = K1 ∪ {s} for s < K1

s is new initial state, s1 becomes an internal state

F = F1 ∪ {s}

∆ = ∆1 ∪ {(s, e, s1)} ∪ {(q, e, s1) : for q ∈ F1}

Directly from the definition we get

L(M) = L(M1)∗

Closure Under Kleene’s Star

The Book diagram is

Given M1 = (K1, Σ, ∆1, s1, F1)

We define

M1
∗ = (K1 ∪ {s}, Σ, ∆, s, F1 ∪ {s})

where s is a new initial state and

∆ = ∆1 ∪ {(s, e, s1)} ∪ {(q, e, s1) : for q ∈ F1}

Two Questions

Here two questions about the construction of M = M1
∗

Q1 Why do we need to make the NEW initial state s of M
also a FINAL state?

Q2 Why can’t SKIP the introduction of the NEW initial state
and design M = M1

∗ as follows

Q1 + Q2 give us answer why we construct M = M1
∗ as we

did, i.e. provides the motivation for the correctness of the
construction

Question 1 Answer

Observe that the definition of M = M1
∗ must be correct for

ALL automata M1 and hence in particular for M1 such that
F1 = ∅,

In this case we have that L(M1) = ∅

But we know that

L(M) = L(M1)∗ = ∅∗ = {e}

This proves that M = M1
∗ must accept e, and hence we must

make s of M also a FINAL state

Diagram

Question 2 Answer

Q2 Why can’t SKIP the introduction of the NEW initial state
and design M = M1

∗

Here is an example

Let M1 , such that L(M1) = a(ba)∗

M1 is defined by a diagram

L(M1)∗ = (a(ba)∗)∗

Question 2 Answer

Here is a diagram of M where we skipped the introduction of
a new initial state

Observe that ab ∈ L(M) , but

ab < (a(ba)∗)∗ = L(M1)∗

This proves incorrectness of the above construction

Correct Diagram

The CORRECT diagram of M = M1
∗ is

Exercise 1

Exercise 1

Construct M such that

L(M) = (ab∗ba ∪ a∗b)∗

Observe that

L(M) = (L(M1) ∪ L(M2))∗

and
M = (M1 ∪M2)∗

Exercise 1

Solution

We construct M such that L(M) = (ab∗ba ∪ a∗b)∗ in the
following steps using the Closure Theorem definitions

Step 1 Construct M1 for L(M1) = ab∗ba

Step 2 Construct M2 for L(M2) = a∗b

Exercise

Step 3 Construct M1 ∪M2

Step 4 Construct M = (M1 ∪M2)∗

L(M) = (ab∗ba ∪ a∗b)∗

Exercise 2

Exercise 2
Construct M such that L(M) = (a∗b ∪ abc∗)a∗b∗

Solution We construct M in the following steps using the
Closure Theorem definitions
Step 1 Construct N1,N2 for L = a∗b and L = abc∗

Step 2 Construct M1 = N1 ∪ N2

Exercise 2

Step 3 Construct M2 for L = a∗b∗

Step 4 Construct M = (M1 ◦M2)∗

L(M) = (a∗b ∪ abc∗)a∗b∗

Back to Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is
closed under the following operations

1. union proved

2. concatenation proved

3. Kleene’s Star proved

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in
the

proof we can choose a DFA or NDFA, as we have already
proved their equivelency

Closure Under Complementation

4. The class of languages accepted by Finite Automata is
closed under complementation

Proof Let
M = (K , Σ, δ, s, F)

be a deterministic finite automaton DFA

The complementary language L = Σ∗ − L(M) is accepted
by the DFA denoted by M that is identical with M except that
final and nonfinal states are interchanged, i.e. we define

M = (K , Σ, δ, s, K − F)

and we have
L(M) = Σ∗ − L(M)

Closure Under Intersection

4. The class of languages accepted by Finite Automata is
closed under intersection
Proof 1
Languages are sets so we have have the following property

L1 ∩ L2 = Σ∗ − ((Σ∗ − L1) ∪ (Σ∗ − L2))

Given finite automata M1,M2 such that

L1 = L(M1) and L2 = L(M2)

We construct M such that L(M) = L1 ∩ L2 as follows
1. Transform M1, M2 into equivalent DFA automata N1,N2

2. Construct N1, N2 and then N = N1 ∪ N2

3. Transform NDF automaton N into equivalent DFA
automaton N′

4. M = N′ is the required finite automata
This is an indirect Construction
Homework: describe the direct construction

Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is
closed under the following operations

1. union proved

2. concatenation proved

3. Kleene’s Star proved

4. complementation proved

5. intersection proved

Observe that we used the term Finite Automata (FA) so in
the

proof we can choose a DFA or NDFA, as we have already
proved their equivelency

Intersection Direct Construction

Direct Construction

Case 1 deterministic

Given deterministic automata M1, M2 such that

M1 = (K1, Σ1, δ1, s1, F1), M2 = (K2, Σ2, δ2, s2, F2)

We construct M = M1 ∩M2 such that L(M) = L(M1) ∩ L(M2)
as follows

M = (K , Σ, δ, s, F)

where . Σ = Σ1 ∪ Σ2

K = K1 × K2, s = (s1, s2), F = F1 × F2

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

Intersection Direct Construction

Proof of correctness of the construction

w ∈ L(M) if and only if

((s1, s2), w) `M
∗ ((f1, f2), e)) and f1 ∈ F1, f2 ∈ F2

if and only if

(s1, w) `M1
∗ (f1, e) for f1 ∈ F1 and

(s2, w) `M2
∗ (f2, e) for f2 ∈ F2

if and only if

w ∈ L(M1) and w ∈ L(M2)

if and only if

w ∈ L(M1) ∩ L(M2)

Intersection Direct Construction

Direct Construction

Case 2 nondeterministic

Given nondeterministic automata M1, M2 such that

M1 = (K1, Σ1, ∆1, s1, F1), M2 = (K2, Σ2, ∆2, s2, F2)

We construct M = M1 ∩M2 such that L(M) = L(M1) ∩ L(M2)
as follows

M = (K , Σ,∆, s, F)

where Σ = Σ1 ∪ Σ2

K = K1 × K2, s = (s1, s2), F = F1 × F2

and ∆ is defined as follows

Intersection Direct Construction

∆ is defined as follows

∆ = ∆′ ∪∆′′ ∪∆′′′

∆′ = {((q1, q2), σ, (p1, p2)) : (q1, σ, p1) ∈ ∆1 and
(q2, σ, p2) ∈ ∆2, σ ∈ Σ}

∆′′ = {((q1, q2), σ, (p1, p2)) : σ = e, (q1, e, p1) ∈ ∆1 and
q2 = p1}

∆′′ = {((q1, q2), σ, (p1, p2)) : σ = e, (q2, e, p2) ∈ ∆2 and
q1 = p1}

Observe that if M1,M2 have each at most n states, our
direct construction of produces M = M1 ∩M2 with at most
n2 states.

The indirect construction from the proof of the theorem might
generate M with up to 22n+1+1 states

Direct Construction Example

Example

Let M1, M2 be given by the following diagrams

Observe that L(M1) ∩ L(M2) = a∗ ∩ a+ = a+

Direct Construction Example

Formally M1, M2 are defined as follows

M1 = ({s1}, {a}, δ1, s1, {s1}), M2 = ({s2, q}, {a}, δ2, s2, {q})

for δ1(s1, a) = s1 and δ2(s2, a) = q, δ2(q, a) = q

By the deterministic case definition we have that
M = M1 ∩M2 is

M = (K , Σ, δ, s, F)

for Σ = {a}

K = K1 × K2 = {s1} × {s2, q} = {(s1, s2), (s1, g) }

s = (s1, s2), F = {s1} × {q} = {(s1, q)}

Direct Construction Example

By definition

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

In our case we have

δ((s1, s2), a) = (δ1(s1, a), δ2(s2, a)) = (s1, q),

δ((s1, q), a) = (δ1(s1, a), δ2(q, a)) = (s1, q)

The diagram of M = M1 ∩M2 is

Main Theorem

Now our goal is to prove a theorem that established the
relationship between languages and finite automata

This is the most important Theorem of this section so we call
it a Main Theorem

Main Theorem

A language L is regular

if and only if

L is accepted by a finite automata

Main Theorem

The Main Theorem consists of the following two parts

Theorem 1

For any a regular language L

there is a e finite automata M, such that L = L(M)

Theorem 2

For any a finite automata M, the language L(M) is regular

Main Theorem

Definition

A language L ⊆ Σ∗ is regular if and only if

there is a regular expression r ∈ R that represents L, i.e.

such that
L = L(r)

Reminder: the function L : R −→ 2Σ∗ is defined
recursively as follows

1. L(∅) = ∅, L(σ) = {σ} for all σ ∈ Σ

2. If α, β ∈ R, then

L(αβ) = L(α) ◦ L(β) concatenation

L(α ∪ β) = L(α) ∪ L(β) union

L(α∗) = L(α)∗ Kleene’s Star

Regular Expressions Definition

Reminder

We define a R of regular expressions over an alphabet Σ
as follows

R ⊆ (Σ∪ {(,), ∅, ∪, ∗})∗ and R is the smallest set such that

1. ∅ ∈ R and Σ ⊆ R, i.e. we have that

∅ ∈ R and ∀σ∈Σ (σ ∈ R)

2. If α, β ∈ R, then

(αβ) ∈ R concatenation

(α ∪ β) ∈ R union

α∗ ∈ R Kleene’s Star

Proof of Main Theorem Part 1

Now we are going to prove the first part of the Main Theorem,
i.e.

Theorem 1

For any a regular language L

there is a finite automata M, such that L = L(M)

Proof

By definition of regular language, L is regular if and only if

there is a regular expression r ∈ R that represents L, what

we write in shorthand notation as L = r

Given a regular language, L, we construct a finite
automaton M such that L(M) = L recursively following the
definition of the set R of regular expressions as follows

Proof Theorem 1

1. r = ∅, i.e. the language is L = ∅

Diagram of M, such that L(M) = ∅ is

We denote M as M = M∅

Proof Theorem 1

2. r = σ, for any σ ∈ Σ i.e. the language is L = σ

Diagram of M, such that L(M) = ∅ is

We denote M as M = Mσ

Proof Theorem 1

3. r , ∅, r , σ

By the recursive definition, we have that L = r where

r = α ∪ β, r = α ◦ β, r = α∗

for any α, β ∈ R

We construct as in the proof of the Closure Theorem the
automata

Mr = Mα ∪ Mβ, Mr = Mα ◦Mβ, Mr = (Mr)
∗

respectively and it ends the proof

Example

Use construction defined in the proof of Theorem 1 to
construct an automaton M such that

L(M) = (ab ∪ aab)∗

We construct M in the following stages

Stage 1

For a, b ∈ Σ we construct Ma and Mb

Example

Stage 2
For ab , aab we use Ma and Mb and concatenation
construction to construct Mab

and Maab

Example

Stage 3
We use union construction to construct M1 = Mab ∪Maab

Stage 4 We use Kleene’s star construction to construct
M = M1

∗

Exercise

Use construction defined in the proof of Theorem 1 to
construct an automaton M such that

L(M) = (a∗ ∪ abc ∪ a∗b)∗

We construct (draw diagrams) M in the following stages
Stage 1
Construct Ma , Mb , Mc

Stage 2
Construct M1 = Mabc

Stage 3
Construct M2 = Ma

∗

Stage 4
Construct M3 = Ma

∗Mb

Stage 5
Construct M4 = M1 ∪M2 ∪M3

Stage 6
Construct M = M4

∗

Main Theorem Part 2

Theorem 2

For any a finite automaton M there is a regular expression
r ∈ R, such that

L(M) = r

Proof

The proof is constructive; given M we will give an algorithm
how to recursively generate the regular expression r , such
that L(M) = r

We assume that M is nondeterministic

M = (K , Σ, ∆, s, F)

We use the BOOK definition, i.e.

∆ ⊆ K × (Σ ∪ {e}) × K

Proof of Theorem 2

We put states of M into a one- to - one sequence

K : s = q1, q2, . . . qn for n ≥ 1

We build r using the following expressions

R(i, j, k) for i, j = 1, 2, . . . n, k = 0, 1, 2, . . . n

R(i, j, k) = {w ∈ Σ∗; (qi , w) `M,k
∗(qj ,w′)}

R(i, j, k) is the set of all words ”spelled” by all PATHS from
qi to qj in such way that we do not pass through an
intermediate state numbered k+1 or greater

Observe that ¬(m ≥ k + 1) ≡ m ≤ k so we get the following

Proof of Theorem 2

We say that a PATH has a RANK k when

(qi , w) `M,k
∗(qj ,w′)

I.e. when M can pass ONLY through states numbered m ≤ k
while going from qi to qj

RANK 0 case k = 0

R(i, j, 0) = {w ∈ Σ∗; (qi , w) `M,0
∗(qj ,w′)}

This means; M ”goes” from qi to qj only through states
numbered m ≤ 0

There is no such states as K = {q1, q2, . . . qn}

Proof of Theorem 2

Hence R(i, j, 0) means that M ”goes” from qi to qj

DIRECTLY, i.e. that

R(i, j, 0) = {w ∈ Σ∗; (qi , w) `M
∗(qj ,w′)}

Reminder: we use the BOOK definition so

R(i, j, 0) =

{
a ∈ Σ ∪ {e} if i , j and (qi , a, qj) ∈ ∆
{e} ∪ a ∈ Σ ∪ {e} if i = j and (qi , a, qj) ∈ ∆

Observe that we need {e} in the second equation to include
the following special case

Proof of Theorem 2

We read R(i, j, 0) from the diagram of M as follows

and

Proof of Theorem 2

RANK n case k = n

R(i, j, n) = {w ∈ Σ∗; (q i , w) `M,n
∗(q j ,w′)}

This means; M ”goes” from qi to qj through states
numbered m ≤ n

It means that M ”goes” all states as |K | = n

It means that M will read any w ∈ Σ and hence

R(i, j, n) = {w ∈ Σ∗; (qi , w) `M
∗(qj , e)}

Observe that

w ∈ L(M) iff w ∈ R(1, j, n) and qj ∈ F

Proof of Theorem 2

By definition of the L(M) we get

L(M) =
⋃
{R(1, j, n) : q j ∈ F}

Fact

All sets R(i, j, k) are regular and hence L(M) is also regular

Proof by induction on k

Base case: k =0

All sets R(i, j, 0) are FINITE, hence are regular

Proof of Theorem 2

Inductive Step

The recursive formula for R(i, j, k) is

R(i, j, k) = R(i, j, k − 1) ∪ R(i, k , k − 1)R(k , k , k − 1)∗R(k , j, k − 1)

where n is the number of states of M and
k = 0, . . . , n, i, j = 1, . . . , n

By Inductive assumption, all sets
R(i, j, k − 1), R(i, k , k − 1), R(k , k , k − 1), R(k , j, k − 1) are
regular and by the Closure Theorem so is the set R(i, j, k)

This ends the proof of Theorem 2

Observe that the recursive formula for R(i, j, k) computes r

such that L(M) = r

Example

Example

For the automaton M such that

M = ({q1, q2, q3}, {a, b}, s = q1,

∆ = {(q1, b , q2), (q1, a, q3), (q2, a, q1), (q2, b , q1),

(q3, a, q1), (q3, b , q1)}, F = {q1})

Evaluate 4 steps, in which you must include at least one

R(i, j, 0), in the construction of regular expression that

defines L(M)

Example

Reminder

L(M) =
⋃
{R(1, j, n) : q j ∈ F}

R(i, j, k) = R(i, j, k − 1) ∪ R(i, k , k − 1)R(k , k , k − 1)∗R(k , j, k − 1)

R(i, j, 0) =

{
a ∈ Σ ∪ {e} if i , j and (qi , a, qj) ∈ ∆
{e} ∪ a ∈ Σ ∪ {e} if i = j and (qi , a, qj) ∈ ∆

Example Solution

Solution

Step 1 L(M) = R(1, 1, 3)

Step 2

R(1, 1, 3) = R(1, 1, 2) ∪ R(1, 3, 2)R(3, 3, 2)∗R(3, 1, 2)

Step 3

R(1, 1, 2) = R(1, 1, 1) ∪ R(1, 2, 1)R(2, 2, 1)∗R(2, 1, 1)

Step 4

R(1, 1, 1) = R(1, 1, 0) ∪ R(1, 1, 0)R(1, 1, 0)∗R(1, 1, 0) and

R(1, 1, 0) = {e} ∪ ∅ = {e}, so we get

R(1, 1, 1) = {e} ∪ {e}{e}∗{e} = {e}

Generalized Automata

Generalized Automaton

Definition
We define now a Generalized Automaton GM as the
following generalization of of a nondeterministic automaton
M = (K , Σ, ∆, s, F) as follows

GM = (KG , ΣG , ∆G , sG , FG)

1. GM has a single final state, i,e. FG = {f }
2. ΣG = Σ ∪ R0 where R0 is a FINITE subset of the set R
of regular expressions over Σ

3. Transitions of GM may be labeled not only by symbols in
Σ ∪ {e} but also by regular expressions r ∈ R, i.e. ∆G is a
FINITE set such that

∆G ⊆ K × (Σ ∪ {e} ∪ R) × K

4. There is no transition going into the initial state s nor out
of the final state f
if (q, u, p) ∈ ∆G , then q , f , p , s

Generalized Automata

Given a nondeterministic automaton

M = (K , Σ, ∆, s, F)

We present now a new method of construction of a regular
expression r ∈ R that defines L(M) , i.e. such that L(M) = r
by the use of the notion of of Generalized Automaton

The method consists of a construction of a sequence of
generalized automata that are all equivalent to M

Construction

Steps of construction are as follows

Step 1

We extend M to a generalized automaton MG , such that
L(M) = L(MG) as depicted on the diagram below

Diagram of MG

MG Definition

Definition of MG

We re-name states of M as s = q1, q2, . . . , qn−2 for
appropriate n and make the initial state s = q1 and all final
states of M the internal non-final states of GM

We ADD TWO states: initial and one final, which me name
qn−1, qn, respectively, i.e. we put

sG = qn−1 and f = qn

We take

∆G = ∆ ∪ {(qn−1, e, s)} ∪ {(q, e, qn) : q ∈ F}

Obviously L(M) = L(MG), and so M ≈ MG

States of GM Elimination

We construct now a sequence GM1,GM2, . . . ,GM(n − 2)
such that

M ≈ MG ≈ GM1 ≈ · · · ≈ GM(n − 2)

where GM(n − 2) has only two states qn−1 and qn and
only one transition (qn−1, r , qn) for r ∈ R, such that

L(M) = r

We construct the sequence GM1,GM2, . . . ,GM(n − 2) by
eliminating states of M one by one following rules given by the
following diagrams

States of GM Elimination

Case 1 of state elimination
Given a fragment of GM diagram

we transform it into

The state q ∈ K has been eliminated preserving the
language of GM and we constructed GM′ ≈ GM

States of GM Elimination

Case 2 of state elimination
Given a fragment of GM diagram

we transform it into

The state q ∈ K has been eliminated preserving the
language of GM and we constructed GM′ ≈ GM

Example 1

Example 1

Use the Generalized Automata Construction and States of GM

Elimination procedure to evaluate r ∈ R, such that

L(r) = L(M)

, where M is an automata that accepts the language

L = {w ∈ {a, b}∗ : w has 3k + 1 b ′s, for some k ∈ N}

This is the Book example, page 80

Example 1

The Diagram of M is

Step 1
We extend M with K = {q1, q2, q3} to a generalized MG by
adding two states

sG = q4 and f = q5

We take
∆G = ∆ ∪ {(q4, e, q1)} ∪ {(q3, e, q5)}

Example 1

The Diagram of MG is

Step 2

We construct GM1 ≈ MG ≈ M by elimination of q1

The Diagram of GM1 is

Example 1

The Diagram of GM1 is

Step 3

We construct GM2 ≈ GM1 by elimination of q2

The Diagram of GM2 is

Example 1

The Diagram of GM2 is

Step 4

We construct GM3 ≈ GM2 by elimination of q3

The Diagram of GM2 is

L(GM3) = a∗b(a ∪ ba∗ba∗b)∗ = L(M)

Example 2

Example 2

Given the automaton

M = (K , Σ, ∆, s, F)

where

K = {q1, q2, q3}, Σ = {a, b}, s = q1, F = {q1}

∆ = {(q1, b , q2), (q1, a, q3), (q2, a, q1),

(q2, b , q1), (q3, a, q1), (q3, b , q1)

Use the Generalized Automata Construction and States of GM

Elimination procedure to evaluate r ∈ R, such that

L(r) = L(M)

Example 2

The diagram of M is

Step 1
The diagram of MG ≈ M is

Example 2

Step 1

The components of MG ≈ M are

MG = (K = {q1, q2, q3, q4, q5}, Σ = {a, b}, sG = q4,

∆G = {(q1, b , q2), (q1, a, q3), (q2, a, q1),

(q2, b , q1), (q3, a, q1), (q3, b , q1), (q4, e, q1),

(q1, e, q5)}, F = {q5})

Example 2

The Diagram of MG is

Step 2
We construct GM1 ≈ MG ≈ M by elimination of q2

The Diagram of GM1 is

Example 2

Step 2

The components of GM1 ≈ MG ≈ M are

GM1 = (K = {q1, q3, q4, q5}, Σ = {a, b}, sG = q4

∆G = {(q1, a, q3), (q1, (bb ∪ ba), q1),

(q3, a, q1), (q3, b , q1), (q4, e, q1),

(q1, e, q5)}, F = {q5})

Example 2

The Diagram of GM1 is

Step 3
We construct GM2 ≈ GM1 by elimination of q3

The Diagram of GM2 is

Example 2

Step 3

The components of GM2 ≈ GM1 ≈ MG ≈ M are

GM2 = (K = {q1, q4, q5}, Σ = {a, b}, sG = q4

∆G = {(q1, (bb ∪ ba), q1), (q1, (aa ∪ ab), q1),

(q4, e, q1), (q1, e, q5)}, F = {q5})

Example 2

The Diagram of GM2 is

Step 4

We construct GM3 ≈ GM2 by elimination of q1

The Diagram of GM3 is

Example 2

We have constructed

GM3 ≈ GM2 ≈ GM1 ≈ MG ≈ M

The Diagram of GM3 is

Hence the language

L(GM3) = (bb ∪ ba ∪ aa ∪ ab)∗ = ((a ∪ b)(a ∪ b))∗ = L(M)

