# cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

# LECTURE 7

# CHAPTER 2 FINITE AUTOMATA

- 1. Deterministic Finite Automata DFA
- 2. Nondeterministic Finite Automata NDFA
- 3. Finite Automata and Regular Expressions
- 4. Languages that are Not Regular
- 5. State Minimization

# CHAPTER 2 PART 3: Finite Automata and Regular Expressions

# Finite Automata and Regular Expressions

The goal of this part of chapter 2 is to prove a **theorem** that establishes a **relationship** between Finite Automata and Regular languages, i.e to **prove** that following

#### **MAIN THEOREM**

A language L is regular if and only if it is accepted by a finite automaton, i.e.

A language L is regular if and only if there is a finite automaton M, such that

$$L = L(M)$$



# Closure Theorem

To achieve our goal we first prove the following

# **CLOSURE THEOREM**

The class of languages accepted by **Finite Automata** (FA) is **closed** under the following operations

- 1. union
- 2. concatenation
- 3. Kleene's Star
- 4. complementation
- 5. intersection

**Observe** that we used the term **Finite Automata** (FA) so in the **proof** we can choose a DFA or a NDFA, as we have already proved their **equivalency** 



#### Closure Theorem

**Remember** that languages are **sets**, so we have the set em[] operations  $\cup$ ,  $\cap$ , -, defined for any  $L_1, L_2 \subseteq \Sigma^*$ , i.e the languages

$$L = L_1 \cup L_2, \quad L = L_1 \cap L_2, \quad L = \Sigma^* - L_1$$

We also defined the languages specific operations of concatenation and Kleene's Star , i.e. the languages

$$L = L_1 \circ L_2$$
 and  $L = L_1^*$ 



1. The class of languages accepted by Finite Automata (FA) is **closed** under union

# **Proof**

Let  $M_1$ ,  $M_2$  be two NDFA finite automata We **construct** a NDF automaton M, such that

$$L(M) = L(M_1) \cup L(M_2)$$

Let 
$$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$$
 and  $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ 

Where (we rename the states, if needed)

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
,  $s_1 \neq s_2$ ,  $K_1 \cap K_2 = \emptyset$   $F_1 \cap F_2 = \emptyset$ 

We **picture** M, such that  $L(M) = L(M_1) \cup L(M_2)$  as follows



 ${\sf M}$  goes nondeterministically to  ${\sf M}_1$  or to  ${\sf M}_2$  reading nothing so we get

$$w \in L(M)$$
 if and only if  $w \in M_1$  or  $w \in M_2$ 

and hence

$$L(M) = L(M_1) \cup L(M_2)$$



# We define formally

$$M = M_1 \cup M_2 = (K, \Sigma, \Delta, s, F)$$

where

$$K = K_1 \cup K_2 \cup \{s\}$$
 for  $s \notin K_1 \cup K_2$ 

s is a new state and

$$F = F_1 \cup F_2, \quad \Delta = \Delta_1 \cup \Delta_2 \cup \{(s, e, s_1), (s, e, s_2)\}$$

for  $s_1$  - initial state of  $M_1$  and

 $s_2$  the initial state of  $M_2$ 

**Observe** that by Mathematical Induction we construct,

for any  $n \ge 2$  an automaton  $M = M_1 \cup M_2 \cup \ldots M_n$  such that

$$L(M) = L(M_1) \cup L(M_2) \cup \ldots L(M_n)$$



# Formal proof

Directly from the definition we get  $w \in L(M)$  if and only if  $\exists_q ((q \in F = F_1 \cup F_2) \cap ((s, w) \vdash_M ^*(q, e))$  if and only if  $\exists_q (((q \in F_1) \cup (q \in F_2)) \cap ((s, w) \vdash_M ^*(q, e))$  if and only if  $\exists_q ((q \in F_1) \cap ((s, w) \vdash_M ^*(q, e)) \cup \exists_q ((q \in F_2) \cap ((s, w) \vdash_M ^*(q, e)))$  if and only if  $w \in L(M_1) \cup w \in L(M_2)$ , what proves that

$$L(M) = L(M_1) \cup L(M_2)$$

We used the following Law of Quantifiers

$$\exists_X (A(x) \cup B(x)) \equiv (\exists_X A(x) \cup \exists_X B(x))$$



# Example 1

**Diagram** of  $M_1$  such that  $L(M_1) = aba^*$  is



**Diagram** of  $M_2$  such that  $L(M_2) = b^*ab$  is



We construct  $M = M_1 \cup M_2$  such that

$$L(M) = aba^* \cup b^*ab = L(M_1) \cup L(M_2)$$

as follows



Example 1

Diagram of M such that  $L(M) = aba^* \cup b^*ab$  is



# Example 2

**Diagram** of  $M_1$  such that  $L(M_1) = b^*abc$  is



**Diagram** of  $M_2$  such that  $L(M_2) = (ab)^*a$  is



We construct  $M = M_1 \cup M_2$  such that

$$L(M) = b^* abc \cup (ab)^* a = L(M_1) \cup L(M_2)$$

as follows



**Diagram** of M such that  $L(M) = b^*abc \cup (ab)^*a$  is



This is a schema diagram

If we need to **specify** the components we put **names** on states on the diagrams



#### Closure Under Concatenation

2. The class of languages accepted by Finite Automata is closed under concatenation

# **Proof**

Let  $M_1$ ,  $M_2$  be two NDFA

We **construct** a NDF automaton M, such that

$$L(M) = L(M_1) \circ L(M_2)$$

Let 
$$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$$
 and

$$M_2=(K_2, \Sigma, \Delta_2, s_2, F_2)$$

Where (if needed we re-name states)

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
,  $S_1 \neq S_2$ ,  $K_1 \cap K_2 = \emptyset$   $F_1 \cap F_2 = \emptyset$ 

#### Closure Under Concatenation

We **picture** M, such that  $L(M) = L(M_1) \circ L(M_2)$  as follows



The final states from  $F_1$  of  $M_1$  become **internal** states of M The initial state  $s_2$  of  $M_2$  becomes an **internal** state of M M goes nondeterministically from ex-final states of  $M_1$  to the ex-initial state of  $M_2$  reading nothing

# Closure Under Concatenation

# We define formally

$$M = M_1 \circ M_2 = (K, \Sigma, \Delta, s_1, F_2)$$

where

$$K = K_1 \cup K_2$$

 $s_1$  of  $M_1$  is the initial state

 $F_2$  of  $M_2$  is the set of final states

$$\Delta = \Delta_1 \cup \Delta_2 \cup \{(q, e, s_2) : \text{ for } q \in F_1\}$$

Directly from the definition we get

$$w \in L(M)$$
 iff  $w = w_1 \circ w_2$  for  $w_1 \in L_1$ ,  $w_2 \in L_2$  and hence

$$L(M) = L(M_1) \circ L(M_2)$$



**Diagram** of  $M_1$  such that  $L(M_1) = aba^*$  is



**Diagram** of  $M_2$  such that  $L(M_2) = b^*ab$  is



We construct  $M = M_1 \circ M_2$  such that

$$L(M) = aba^* \circ b^*ab = L(M_1) \circ L(M_2)$$

as follows



Given a language  $L = aba^*b^*ab$ 

**Observe** that we can reprezent L as, for example, the following concatenation

$$L = ab \circ a^* \circ b^* \circ ab$$

Then we construct "easy" automata  $M_1$ ,  $M_2$ ,  $M_3$ ,  $M_4$  as follows



We know, by Mathematical Induction that we can construct, for any  $n \ge 2$  an automaton

$$M = M_1 \circ M_2 \circ \circ M_n$$

such that

$$L(M) = L(M_1) \circ \ldots \circ L(M_n)$$

In our case n=4 and we get

Diagram of M



and 
$$L(M) = aba*b*ab$$



#### Question

# Question

Why we have to go be the transactions  $(q, e, s_2)$  between  $M_1$  and  $M_2$  while constructing  $M = M_1 \circ M_2$ ?

**Example** of a construction when we can't SKIP the transaction  $(q, e, s_2)$ 

Here is a **correct** construction of  $M = M_1 \circ M_2$ 



**Observe** that  $abbabab \notin L(M)$ 



#### Question

Here is a construction of  $M' = M_1 \circ M_2$  without the transaction  $(q, e, s_2)$ 



**Observe** that  $abbabab \in L(M')$  and  $abbabab \notin L(M)$ We hence proved that skipping the transactions  $(q, e, s_2)$ between  $M_1$  and  $M_2$  leads to automata accepting different languages



#### Closure Under Kleene's Star

**3.** The class of languages accepted by Finite Automata is **closed** under Kleene's Star

**Proof** Let 
$$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$$

We **construct** a NDF automaton  $M = M_1^*$ , such that

$$L(M) = L(M_1)^*$$

# Here is a diagram



#### Closure Under Kleene's Star

Given 
$$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$$
  
We define formally

$$M = M_1^* = (K, \Sigma, \Delta, s, F)$$

where

$$K = K_1 \cup \{s\}$$
 for  $s \notin K_1$ 

s is new initial state, s<sub>1</sub> becomes an internal state

$$F = F_1 \cup \{s\}$$

$$\Delta = \Delta_1 \cup \{(s, e, s_1)\} \cup \{(q, e, s_1) : \text{ for } q \in F_1\}$$

Directly from the definition we get

$$L(M) = L(M_1)^*$$



# Closure Under Kleene's Star

# The Book diagram is



Given 
$$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$$
  
We define

$$M_1^* = (K_1 \cup \{s\}, \ \Sigma, \ \Delta, \ s, \ F_1 \cup \{s\})$$

where s is a new initial state and

$$\Delta = \Delta_1 \cup \{(s, e, s_1)\} \cup \{(q, e, s_1) : \text{ for } q \in F_1\}$$



#### Two Questions

Here **two questions** about the construction of  $M = M_1^*$ 

Q1 Why do we need to make the NEW initial state s of M also a FINAL state?

**Q2** Why can't SKIP the introduction of the NEW initial state and design  $M = M_1^*$  as follows



**Q1 + Q2** give us answer why we construct  $M = M_1^*$  as we did, i.e. provides the motivation for the correctness of the construction

#### Question 1 Answer

**Observe** that the definition of  $M = M_1^*$  must be correct for ALL automata  $M_1$  and hence in particular for  $M_1$  such that  $F_1 = \emptyset$ ,

In this case we have that  $L(M_1) = \emptyset$ But we know that

$$L(M) = L(M_1)^* = \emptyset^* = \{e\}$$

This proves that  $M = M_1^*$  must accept e, and hence we must make s of M also a FINAL state

# Diagram



#### Question 2 Answer

**Q2** Why can't SKIP the introduction of the NEW initial state and design  $M = M_1^*$ 

Here is an example

Let  $M_1$ , such that  $L(M_1) = a(ba)^*$ 

M<sub>1</sub> is defined by a diagram



$$L(M_1)^* = (a(ba)^*)^*$$

#### Question 2 Answer

Here is a **diagram** of *M* where we skipped the introduction of a new initial state



**Observe** that  $ab \in L(M)$ , but

ab 
$$\notin (a(ba)^*)^* = L(M_1)^*$$

This proves **incorrectness** of the above construction



# **Correct Diagram**

The CORRECT diagram of  $M = M_1^*$  is



#### **Exercise 1**

Construct M such that

$$L(M) = (ab^*ba \cup a^*b)^*$$

**Observe** that

$$L(M) = (L(M_1) \cup L(M_2))^*$$

and

$$M=(M_1\cup M_2)^*$$

# Solution

We construct M such that  $L(M) = (ab^*ba \cup a^*b)^*$  in the following steps using the **Closure Theorem** definitions

**Step 1** Construct  $M_1$  for  $L(M_1) = ab^*ba$ 



**Step 2** Construct  $M_2$  for  $L(M_2) = a^*b$ 



**Step 3** Construct  $M_1 \cup M_2$ 



**Step 4** Construct  $M = (M_1 \cup M_2)^*$ 



$$L(M) = (ab^*ba \cup a^*b)^*$$

#### Exercise 2

Construct M such that  $L(M) = (a^*b \cup abc^*)a^*b^*$ 

**Solution** We construct M in the following steps using the **Closure Theorem** definitions

**Step 1** Construct  $N_1, N_2$  for  $L = a^*b$  and  $L = abc^*$ 



**Step 2** Construct  $M_1 = N_1 \cup N_2$ 



**Step 3** Construct  $M_2$  for  $L = a^*b^*$ 



**Step 4** Construct  $M = (M_1 \circ M_2)^*$ 



 $L(M) = (a^*b \cup abc^*)a^*b^*$ 



#### Back to Closure Theorem

#### **CLOSURE THEOREM**

The class of languages accepted by **Finite Automata FA**) is **closed** under the following operations

- 1. union proved
- 2. concatenation proved
- 3. Kleene's Star proved
- 4. complementation
- 5. intersection

**Observe** that we used the term **Finite Automata** (FA) so in the

proof we can choose a DFA or NDFA, as we have already proved their **equivelency** 



# Closure Under Complementation

**4.** The class of languages accepted by Finite Automata is **closed** under complementation

**Proof** Let

$$M = (K, \Sigma, \delta, s, F)$$

be a **deterministic** finite automaton DFA

The complementary language  $\overline{L} = \Sigma^* - L(M)$  is accepted by the DFA denoted by  $\overline{M}$  that is identical with M except that final and nonfinal states are interchanged, i.e. we define

$$\overline{M} = (K, \Sigma, \delta, s, K - F)$$

and we have

$$L(\overline{M}) = \Sigma^* - L(M)$$



## Closure Under Intersection

The class of languages accepted by Finite Automata is closed under intersection

# Proof 1

Languages are sets so we have have the following property

$$L_1 \cap L_2 = \Sigma^* - ((\Sigma^* - L_1) \cup (\Sigma^* - L_2))$$

Given finite automata  $M_1, M_2$  such that

$$L_1 = L(M_1)$$
 and  $L_2 = L(M_2)$ 

We construct M such that  $L(M) = L_1 \cap L_2$  as follows

- **1.** Transform  $M_1$ ,  $M_2$  into equivalent DFA automata  $N_1$ ,  $N_2$
- **2.** Construct  $\overline{N_1}$ ,  $\overline{N_2}$  and then  $N = \overline{N_1} \cup \overline{N_2}$
- 3. Transform NDF automaton N into equivalent DFA automaton N'
- **4.**  $M = \overline{N'}$  is the required finite automata This is an indirect Construction

Homework: describe the direct construction



#### Closure Theorem

#### **CLOSURE THEOREM**

The class of languages accepted by **Finite Automata FA**) is **closed** under the following operations

- 1. union proved
- 2. concatenation proved
- 3. Kleene's Star proved
- 4. complementation proved
- 5. intersection proved

**Observe** that we used the term **Finite Automata** (FA) so in the

proof we can choose a DFA or NDFA, as we have already proved their **equivelency** 



# **Direct Construction**

#### Case 1 deterministic

Given **deterministic** automata  $M_1$ ,  $M_2$  such that

$$M_1 = \big(K_1, \; \Sigma_1, \; \delta_1, \; s_1, \; F_1\big), \quad \ \, M_2 = \big(K_2, \; \Sigma_2, \; \delta_2, \; s_2, \; F_2\big)$$

We construct  $M = M_1 \cap M_2$  such that  $L(M) = L(M_1) \cap L(M_2)$  as follows

$$M = (K, \Sigma, \delta, s, F)$$

where . 
$$\Sigma = \Sigma_1 \cup \Sigma_2$$

$$K=K_1\times K_2, \quad s=(s_1,s_2), \quad F=F_1\times F_2$$

$$\delta((q_1,q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

```
Proof of correctness of the construction
w \in L(M) if and only if
((s_1, s_2), w) \vdash_{M}^* ((f_1, f_2), e) and f_1 \in F_1, f_2 \in F_2
             if and only if
(s_1, w) \vdash_{M_1}^* (f_1, e) for f_1 \in F_1 and
(s_2, w) \vdash_{M_2}^* (f_2, e) \text{ for } f_2 \in F_2
             if and only if
w \in L(M_1) and w \in L(M_2)
             if and only if
w \in L(M_1) \cap L(M_2)
```

# **Direct Construction**

## Case 2 nondeterministic

Given **nondeterministic** automata  $M_1$ ,  $M_2$  such that

$$M_1 = (K_1, \Sigma_1, \Delta_1, s_1, F_1), M_2 = (K_2, \Sigma_2, \Delta_2, s_2, F_2)$$

We construct  $M = M_1 \cap M_2$  such that  $L(M) = L(M_1) \cap L(M_2)$  as follows

$$M = (K, \Sigma, \Delta, s, F)$$

where  $\Sigma = \Sigma_1 \cup \Sigma_2$ 

$$K = K_1 \times K_2$$
,  $s = (s_1, s_2)$ ,  $F = F_1 \times F_2$ 

and  $\Delta$  is defined as follows



# is defined as follows

$$\Delta = \Delta' \cup \Delta'' \cup \Delta'''$$

$$\begin{array}{lll} \Delta' = \{((q_1,q_2),\sigma,(p_1,p_2)): & (q_1,\sigma,p_1) \in \Delta_1 \text{ and } \\ (q_2,\sigma,p_2) \in \Delta_2, & \sigma \in \Sigma\} \\ \Delta'' = \{((q_1,q_2),\sigma,(p_1,p_2)): & \sigma = e, & (q_1,\ e,\ p_1) \in \Delta_1 \text{ and } \\ q_2 = p_1\} \\ \Delta'' = \{((q_1,q_2),\sigma,(p_1,p_2)): & \sigma = e, & (q_2,e,p_2) \in \Delta_2 \text{ and } \\ q_1 = p_1\} \end{array}$$

**Observe** that if  $M_1$ ,  $M_2$  have each at most n states, our direct construction of produces  $M = M_1 \cap M_2$  with at most  $n^2$  states.

The **indirect** construction from the proof of the theorem might generate M with up to  $2^{2^{n+1}+1}$  states



# **Direct Construction Example**

# **Example**

Let  $M_1$ ,  $M_2$  be given by the following diagrams



Observe that  $L(M_1) \cap L(M_2) = a^* \cap a^+ = a^+$ 

# **Direct Construction Example**

Formally  $M_1$ ,  $M_2$  are defined as follows

$$M_1=\big(\{s_1\},\ \{a\},\ \delta_1,\ s_1,\ \{s_1\}\big),\ M_2=\big(\{s_2,q\},\ \{a\},\ \delta_2,\ s_2,\ \{q\}\big)$$
 for  $\delta_1(s_1,a)=s_1$  and  $\delta_2(s_2,a)=q,\ \delta_2(q,a)=q$ 

By the deterministic case **definition** we have that  $M = M_1 \cap M_2$  is

$$M = (K, \Sigma, \delta, s, F)$$

for 
$$\Sigma = \{a\}$$

$$K = K_1 \times K_2 = \{s_1\} \times \{s_2, q\} = \{(s_1, s_2), (s_1, g)\}$$

$$s = (s_1, s_2), F = \{s_1\} \times \{q\} = \{(s_1, q)\}$$

# **Direct Construction Example**

# By definition

$$\delta((q_1,q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

In our case we have

$$\delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a)) = (s_1, q),$$
  
 $\delta((s_1, q), a) = (\delta_1(s_1, a), \delta_2(q, a)) = (s_1, q)$ 

The diagram of  $M = M_1 \cap M_2$  is



#### Main Theorem

Now our goal is to prove a theorem that established the relationship between languages and finite automata

This is the most important Theorem of this section so we call it a Main Theorem

# **Main Theorem**

A language L is regular
if and only if
L is accepted by a finite automata

4□ > 4個 > 4 = > 4 = > = 900

#### Main Theorem

The Main Theorem consists of the following two parts

# Theorem 1

For any a regular language L there is a e finite automata M, such that L = L(M)

#### Theorem 2

For any a finite automata M, the language L(M) is regular



#### Main Theorem

# **Definition**

A language  $L \subseteq \Sigma^*$  is regular if and only if there is a regular expression  $r \in \mathcal{R}$  that represents L, i.e. such that

$$L = \mathcal{L}(r)$$

**Reminder**: the function  $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$  is defined recursively as follows

**1.** 
$$\mathcal{L}(\emptyset) = \emptyset$$
,  $\mathcal{L}(\sigma) = \{\sigma\}$  for all  $\sigma \in \Sigma$ 

**2.** If  $\alpha, \beta \in \mathcal{R}$ , then

$$\mathcal{L}(lphaeta) = \mathcal{L}(lpha) \circ \mathcal{L}(eta)$$
 concatenation  $\mathcal{L}(lpha \cup eta) = \mathcal{L}(lpha) \cup \mathcal{L}(eta)$  union  $\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$  Kleene's Star



# Regular Expressions Definition

## Reminder

We define a  $\mathcal R$  of **regular expressions** over an alphabet  $\Sigma$  as follows

 $\mathcal{R} \subseteq (\Sigma \cup \{(, ), \emptyset, \cup, *\})^*$  and  $\mathcal{R}$  is the smallest set such that **1.**  $\emptyset \in \mathcal{R}$  and  $\Sigma \subseteq \mathcal{R}$ , i.e. we have that

$$\emptyset \in \mathcal{R}$$
 and  $\forall_{\sigma \in \Sigma} (\sigma \in \mathcal{R})$ 

**2.** If  $\alpha, \beta \in \mathcal{R}$ , then

$$(\alpha \beta) \in \mathcal{R}$$
 concatenation  $(\alpha \cup \beta) \in \mathcal{R}$  union  $\alpha^* \in \mathcal{R}$  Kleene's Star



#### Proof of Main Theorem Part 1

Now we are going to **prove** the first part of the Main Theorem, i.e.

## Theorem 1

For any a regular language L there is a finite automata M, such that L = L(M)

# **Proof**

By definition of regular language, L is regular if and only if there is a regular expression  $r \in \mathcal{R}$  that represents L, what we write in **shorthand** notation as L = r

Given a regular language, L, we **construct** a finite automaton M such that L(M) = L recursively following the definition of the set  $\mathcal{R}$  of **regular expressions** as follows

#### **Proof Theorem 1**

1.  $r = \emptyset$ , i.e. the language is  $L = \emptyset$ **Diagram** of M, such that  $L(M) = \emptyset$  is



We denote M as  $M = M_0$ 

## **Proof Theorem 1**

2.  $r = \sigma$ , for any  $\sigma \in \Sigma$  i.e. the language is  $L = \sigma$ Diagram of M, such that  $L(M) = \emptyset$  is



We denote M as  $M = M_{\sigma}$ 

#### **Proof Theorem 1**

**3.** 
$$r \neq \emptyset$$
,  $r \neq \sigma$ 

By the recursive definition, we have that L = r where

$$r = \alpha \cup \beta$$
,  $r = \alpha \circ \beta$ ,  $r = \alpha^*$ 

for any  $\alpha, \beta \in \mathcal{R}$ 

We construct as in the proof of the **Closure Theorem** the automata

$$M_r = M_\alpha \cup M_\beta$$
,  $M_r = M_\alpha \circ M_\beta$ ,  $M_r = (M_r)^*$ 

respectively and it ends the proof

Use construction defined in the proof of **Theorem 1** to construct an automaton M such that

$$L(M) = (ab \cup aab)^*$$

We construct M in the following stages

# Stage 1

For  $a, b \in \Sigma$  we construct  $M_a$  and  $M_b$ 



Stage 2

For ab, aab we use  $M_a$  and  $M_b$  and **concatenation** construction to construct  $M_{ab}$ 

$$M_{ab} = M_a \circ M_b$$

$$M_{ab} = M_a \circ M_b$$

$$M_a \circ M_b$$

and  $M_{aab}$ 

Stage 3
We use union construction to construct  $M_1 = M_{ab} \cup M_{aab}$ 



**Stage 4** We use Kleene's **star** construction to construct  $M = M_1^*$ 



#### Exercise

Use construction defined in the proof of **Theorem 1** to construct an automaton M such that

$$L(M) = (a^* \cup abc \cup a^*b)^*$$

We construct (draw diagrams) M in the following stages

# Stage 1

Construct  $M_a$ ,  $M_b$ ,  $M_c$ 

Stage 2

Construct  $M_1 = M_{abc}$ 

Stage 3

Construct  $M_2 = M_a^*$ 

Stage 4

Construct  $M_3 = M_a^* M_b$ 

Stage 5

Construct  $M_4 = M_1 \cup M_2 \cup M_3$ 

Stage 6

Construct  $M = M_4^*$ 



#### Main Theorem Part 2

## Theorem 2

For any a finite automaton M there is a regular expression  $r \in \mathcal{R}$ , such that

$$L(M) = r$$

#### **Proof**

The proof is **constructive**; given M we will give an algorithm how to recursively generate the regular expression r, such that L(M) = r

We assume that M is nondeterministic

$$M = (K, \Sigma, \Delta, s, F)$$

We use the BOOK definition, i.e.

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$



We put states of M into a one- to - one sequence

$$K: s = q_1, q_2, \ldots q_n \text{ for } n \ge 1$$

We build r using the following expressions

$$R(i, j, k)$$
 for  $i, j = 1, 2, ..., n$ ,  $k = 0, 1, 2, ..., n$   
 $R(i, j, k) = \{w \in \Sigma^*; (q_i, w) \vdash_{M,k} (q_j, w')\}$ 

R(i, j, k) is the set of all words "spelled" by all PATHS from  $q_i$  to  $q_j$  in such way that we **do not pass** through an intermediate state numbered k+1 or greater

**Observe** that  $\neg (m \ge k + 1) \equiv m \le k$  so we get the following



We say that a PATH has a RANK k when

$$(q_i, w) \vdash_{M,k} (q_j, w')$$

I.e. when M can pass ONLY through states numbered  $m \le k$  while going from  $q_i$  to  $q_j$ 

RANK 0 case k=0

$$R(i, j, 0) = \{w \in \Sigma^*; (q_i, w) \vdash_{M,0} (q_j, w')\}$$

This means; M "goes" from  $q_i$  to  $q_j$  only through states numbered  $m \le 0$ 

There is **no** such states as  $K = \{q_1, q_2, \dots q_n\}$ 



Hence R(i, j, 0) means that M "goes" from  $q_i$  to  $q_j$  DIRECTLY, i.e. that

$$R(i, j, 0) = \{w \in \Sigma^*; (q_i, w) \vdash_M^* (q_j, w')\}$$

Reminder: we use the BOOK definition so

$$R(i, j, 0) = \begin{cases} a \in \Sigma \cup \{e\} & \text{if } i \neq j \text{ and } (q_i, a, q_j) \in \Delta \\ \{e\} \cup a \in \Sigma \cup \{e\} & \text{if } i = j \text{ and } (q_i, a, q_j) \in \Delta \end{cases}$$

**Observe** that we need {e} in the second equation to include the following special case





We read R(i, j, 0) from the **diagram** of M as follows

$$R(i, j, o) = \{0 \in \Sigma \cup \{e\}: o \xrightarrow{\alpha} \begin{cases} 2i \end{cases} \}$$

and

# RANK n case k = n

$$R(i, j, n) = \{w \in \Sigma^*; (q_i, w) \vdash_{M,n} (q_j, w')\}$$

This means; M "goes" from  $q_i$  to  $q_j$  through states numbered  $m \le n$ 

It means that M "goes" all states as |K| = nIt means that M will read any  $w \in \Sigma$  and hence

$$R(i, j, n) = \{w \in \Sigma^*; (q_i, w) \vdash_M^* (q_j, e)\}$$

#### Observe that

$$w \in L(M)$$
 iff  $w \in R(1, j, n)$  and  $q_i \in F$ 



By definition of the L(M) we get

$$L(M) = \{ \{ R(1, j, n) : q_j \in F \} \}$$

### Fact

All sets R(i, j, k) are regular and hence L(M) is also regular

**Proof** by induction on k

Base case: k = 0

All sets R(i, j, 0) are FINITE, hence are regular

# **Inductive Step**

The **recursive formula** for R(i, j, k) is

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$$

where n is the number of states of M and

$$k=0,\ldots,n,\ i,j=1,\ldots,n$$

By Inductive assumption, all sets

$$R(i,j,k-1)$$
,  $R(i,k,k-1)$ ,  $R(k,k,k-1)$ ,  $R(k,j,k-1)$  are regular and by the **Closure Theorem** so is the set  $R(i,j,k)$ 

This ends the proof of Theorem 2

**Observe** that the recursive formula for R(i, j, k) computes r such that L(M) = r

# Example

For the automaton M such that

$$M = (\{q_1, q_2, q_3\}, \{a, b\}, s = q_1,$$

$$\Delta = \{(q_1, b, q_2), (q_1, a, q_3), (q_2, a, q_1), (q_2, b, q_1),$$

$$(q_3, a, q_1), (q_3, b, q_1)\}, F = \{q_1\})$$

**Evaluate 4 steps**, in which you must include at least one R(i, j, 0), in the construction of regular expression that defines L(M)

## Reminder

$$L(M) = \bigcup \{R(1, j, n) : q_j \in F\}$$

$$R(i, j, k) = R(i, j, k - 1) \cup R(i, k, k - 1)R(k, k, k - 1)^*R(k, j, k - 1)$$

$$R(i, j, 0) = \begin{cases} a \in \Sigma \cup \{e\} & \text{if } i \neq j \text{ and } (q_i, a, q_j) \in \Delta \\ \{e\} \cup a \in \Sigma \cup \{e\} & \text{if } i = j \text{ and } (q_i, a, q_j) \in \Delta \end{cases}$$

# **Example Solution**

# Solution

Step 1 
$$L(M) = R(1,1,3)$$
  
Step 2  $R(1,1,3) = R(1,1,2) \cup R(1,3,2)R(3,3,2)*R(3,1,2)$   
Step 3  $R(1,1,2) = R(1,1,1) \cup R(1,2,1)R(2,2,1)*R(2,1,1)$   
Step 4  $R(1,1,1) = R(1,1,0) \cup R(1,1,0)R(1,1,0)*R(1,1,0)$  and  $R(1,1,0) = \{e\} \cup \emptyset = \{e\}$ , so we get  $R(1,1,1) = \{e\} \cup \{e\} \{e\} * \{e\} = \{e\}$ 

# Generalized Automata

#### **Generalized Automaton**

## **Definition**

We define now a **Generalized Automaton** GM as the following generalization of a nondeterministic automaton  $M = (K, \Sigma, \Delta, s, F)$  as follows

$$GM = (K_G, \Sigma_G, \Delta_G, s_G, F_G)$$

- **1.** GM has a single final state, i,e.  $F_G = \{f\}$
- 2.  $\Sigma_G = \Sigma \cup \mathcal{R}_0$  where  $\mathcal{R}_0$  is a FINITE subset of the set  $\mathcal{R}$  of **regular expressions** over  $\Sigma$
- **3.** Transitions of GM may be labeled not only by symbols in  $\Sigma \cup \{e\}$  but also by **regular expressions**  $r \in \mathcal{R}$ , i.e.  $\Delta_G$  is a FINITE set such that

$$\Delta_G \subseteq K \times (\Sigma \cup \{e\} \cup \mathcal{R}) \times K$$

**4.** There is no transition going into the initial state **s** nor out of the final state **f** 

if 
$$(q, u, p) \in \Delta_G$$
, then  $q \neq f$ ,  $p \neq s$ 



#### Generalized Automata

Given a nondeterministic automaton

$$M = (K, \Sigma, \Delta, s, F)$$

We present now a new method of construction of a regular expression  $r \in \mathcal{R}$  that defines L(M), i.e. such that L(M) = r by the use of the notion of of **Generalized Automaton**The method consists of a construction of a sequence of generalized automata that are all equivalent to M

#### Construction

Steps of construction are as follows

# Step 1

We **extend** M to a generalized automaton  $M_G$ , such that  $L(M) = L(M_G)$  as depicted on the diagram below

Diagram of M<sub>G</sub>



#### M<sub>G</sub> Definition

#### **Definition** of M<sub>G</sub>

We re-name states of M as  $s=q_1,q_2,\ldots,q_{n-2}$  for appropriate n and make the initial state  $s=q_1$  and all final states of M the internal non-final states of  $G_M$ 

We ADD TWO states: initial and one final, which me name  $q_{n-1}$ ,  $q_n$ , respectively, i.e. we put

$$s_G = q_{n-1}$$
 and  $f = q_n$ 

We take

$$\Delta_G = \Delta \cup \{(q_{n-1}, e, s)\} \cup \{(q, e, q_n) : q \in F\}$$

**Obviously**  $L(M) = L(M_G)$ , and so  $M \approx M_G$ 



#### States of $G_M$ Elimination

We construct now a sequence GM1, GM2, ..., GM(n-2) such that

$$M \approx M_G \approx GM1 \approx \cdots \approx GM(n-2)$$

where GM(n-2) has only **two states**  $q_{n-1}$  and  $q_n$  and only **one transition**  $(q_{n-1}, r, q_n)$  for  $r \in \mathcal{R}$ , such that

$$L(M) = r$$

We construct the sequence GM1, GM2,..., GM(n-2) by eliminating states of M one by one following rules given by the following diagrams



#### States of $G_M$ Elimination

# Case 1 of state elimination Given a fragment of GM diagram



we transform it into



The state  $q \in K$  has been **eliminated** preserving the language of GM and we constructed  $GM' \approx GM$ 

#### States of $G_M$ Elimination

# Case 2 of state elimination

Given a fragment of GM diagram



#### we transform it into



The state  $q \in K$  has been **eliminated** preserving the language of GM and we constructed  $GM' \approx GM$ 

#### Example 1

Use the Generalized Automata Construction and States of  $G_M$  Elimination procedure to evaluate  $r \in \mathcal{R}$ , such that

$$\mathcal{L}(r) = L(M)$$

, where M is an automata that accepts the language

$$L = \{w \in \{a, b\}^* : w \text{ has } 3k + 1 \text{ } b'\text{s}, \text{ for some } k \in N\}$$

This is the Book example, page 80



# The **Diagram** of M is



# Step 1

We extend M with  $K = \{q_1, q_2, q_3\}$  to a generalized  $M_G$  by adding two states

$$s_G = q_4$$
 and  $f = q_5$ 

We take

$$\Delta_G = \Delta \cup \{(q_4, e, q_1)\} \cup \{(q_3, e, q_5)\}$$

# The **Diagram** of $M_G$ is



Step 2

We construct  $GM1 \approx M_G \approx M$  by elimination of  $q_1$ The **Diagram** of GM1 is



# The **Diagram** of **GM1** is



Step 3

We construct  $GM2 \approx GM1$  by elimination of  $q_2$ The **Diagram** of GM2 is



# The **Diagram** of **GM2** is



# Step 4

We construct  $GM3 \approx GM2$  by **elimination** of  $q_3$ The **Diagram** of GM2 is

$$L(GM3) = a*b(a \cup ba*ba*b)* = L(M)$$



#### Example 2

Given the automaton

$$M = (K, \Sigma, \Delta, s, F)$$

where

$$K = \{q_1, q_2, q_3\}, \quad \Sigma = \{a, b\}, \quad s = q_1, \quad F = \{q_1\}$$

$$\Delta = \{(q_1, b, q_2), \quad (q_1, a, q_3), \quad (q_2, a, q_1), \quad (q_2, b, q_1), \quad (q_3, b, q_1)$$

Use the Generalized Automata Construction and States of  $G_M$  Elimination procedure to evaluate  $r \in \mathcal{R}$ , such that

$$\mathcal{L}(r) = \mathcal{L}(M)$$

# The diagram of M is



Step 1 The diagram of  $M_G \approx M$  is



# Step 1

The components of  $M_G \approx M$  are

$$M_G = (K = \{q_1, q_2, q_3, q_4, q_5\}, \quad \Sigma = \{a, b\}, \quad s_G = q_4,$$

$$\Delta_G = \{(q_1, b, q_2), (q_1, a, q_3), (q_2, a, q_1),$$

$$(q_2, b, q_1), (q_3, a, q_1), (q_3, b, q_1), \quad (q_4, e, q_1),$$

$$(q_1, e, q_5)\}, \qquad F = \{q_5\}$$

# The **Diagram** of $M_G$ is



Step 2 We construct  $GM1 \approx M_G \approx M$  by elimination of  $q_2$  The Diagram of GM1 is



#### Step 2

The components of  $GM1 \approx M_G \approx M$  are

$$\begin{aligned} \textbf{GM1} &= (K = \{q_1, q_3, q_4, q_5\}, \quad \Sigma = \{a, b\}, \quad s_G = q_4 \\ & \Delta_G = \{(q_1, a, q_3), \ (q_1, (bb \cup ba), q_1), \\ & (q_3, a, q_1), \quad (q_3, b, q_1), \quad (q_4, e, q_1), \\ & (q_1, e, q_5)\}, \quad F = \{q_5\}) \end{aligned}$$

#### The **Diagram** of **GM1** is



# Step 3

We construct  $GM2 \approx GM1$  by **elimination** of  $q_3$ The **Diagram** of GM2 is



#### Step 3

The components of  $GM2 \approx GM1 \approx M_G \approx M$  are

GM2 = 
$$(K = \{q_1, q_4, q_5\}, \Sigma = \{a, b\}, s_G = q_4$$
  
 $\Delta_G = \{(q_1, (bb \cup ba), q_1), (q_1, (aa \cup ab), q_1), (q_4, e, q_1), (q_1, e, q_5)\}, F = \{q_5\})$ 

## The **Diagram** of **GM2** is



# Step 4

We construct  $GM3 \approx GM2$  by elimination of  $q_1$ The **Diagram** of GM3 is



#### We have constructed

$$GM3 \approx GM2 \approx GM1 \approx M_G \approx M$$

#### The **Diagram** of **GM3** is



#### Hence the language

$$L(GM3) = (bb \cup ba \cup aa \cup ab)^* = ((a \cup b)(a \cup b))^* = L(M)$$

