cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

LECTURE 6a

REVIEW for Q2

- Q2 covers Lecture 5 and Lecture 6
- Chapter 2 Deterministic Finite Automata DFA
- Chapter 2 Nondeterministic Finite Automata NDFA
- 1. Some YES- NO Questions
- 2. Some Very Short Questions
- 3. Some Homework Problems

CHAPTER 2 PART 1 Deterministic Finite Automata DFA Nondeterministic Finite Automata NDFA

Write your answers and only after writing them check the solutions

Q1 Alphabet Σ of any deterministic finite automaton M is always non-empty

Q2 The set K of **states** of any deterministic finite automaton is always non-empty

Q3 A configuration of a DF Automaton $M = (K, \Sigma, \delta, s, F)$ is any element of $K \times \Sigma^* \times K$

Q4 Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a **transition relation** iff he following condition holds

$$(q, aw) \vdash_M (q', w)$$
 iff $\delta(q', a) = q$

```
Q5 A configuration of a non- deterministic finite automaton
M = (K, \Sigma, \Delta, s, F) is any element of K \times \Sigma^*
Q6 Given M = (K, \Sigma, \delta, s, F) we define
L(M) = \{ w \in \Sigma^* : ((s, w) \vdash^*_M (g, e)) \text{ for some } g \in K \}
Q7 Given M = (K, \Sigma, \delta, s, F) we define
L(M) = \{ w \in \Sigma^* : \exists_{q \in K} ((s, w) \vdash^*_M (q, e)) \}
Q8 If M = (K, \Sigma, \delta, s, F) is a deterministic, then M is also
non-deterministic
Q9 For any automata M, we have that L(M) \neq \emptyset
Q10 For any DFA M = (K, \Sigma, \delta, s, F),
e \in L(M) if and only if s \in F
```

- **Q11** $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when $\Delta \subseteq K \times \Sigma^* \times K$
- **Q12** $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when $\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$
- Q13 The set of all configurations of any non-deterministic state automata is always non-empty
- **Q14** We say that two automata M_1, M_2 (deterministic or nondeterministic) are the same, i.e. $M_1 = M_2$ if and only if $L(M_1) = L(M_2)$
- **Q15** For any DFA M, there is is a NDFA M', such that $M \approx M'$

Q16 For any NDFA M, there is is a DFA M', such that $M \approx M'$

Q17 If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture

Q18 We define, for any (deterministic or non-deterministic $M = (K, \Sigma, \Delta, s, F)$ a **computation** of the length n from (q, w) to (q', w') as a **sequence**

$$(q_1, w_1), (q_2, w_2), ..., (q_n, w_n), n \ge 1$$

of configurations, such that

$$q_1 = q$$
, $q_n = q'$, $w_1 = w$, $w_n = w'$ and $(q_i, w_i) \vdash^*_M (q_{i+1}, w_{i+1})$ for $i = 1, 2, ... n - 1$

Statement: For any M a computation (q, w) exists

Here are solutions to some short YES/NO Questions for material covered in Chapter 2, Part 1

Solving Quizzes and Tests you have to write a short solutions and circle the answer

You will get **0 pts** if you only circle your answer without providing a solution, even if it is correct

Here are some questions

Q1 Alphabet Σ of any deterministic finite automaton M is always non-empty

no An alphabet Σ is, by definition, any **finite set**, hence it can be empty

Q2 The set K of **states** of any deterministic finite automaton is always non-empty

yes $s \in K$


```
Q3 A configuration of a DF Automaton M = (K, \Sigma, \delta, s, F) is any element of K \times \Sigma^* \times K
```

no Configuration is any element $(q, w) \in K \times \Sigma^*$

Q4 Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a **transition relation** iff the following condition holds

$$(q, aw) \vdash_M (q', w)$$
 iff $\delta(q', a) = q$

no Proper condition is:

$$(q, aw) \vdash_M (q', w)$$
 iff $\delta(q, a) = q'$

Q5 A configuration of a non- deterministic finite automaton $M = (K, \Sigma, \Delta, s, F)$ is any element of $K \times \Sigma^*$

yes by definition

```
Q6 Given M = (K, \Sigma, \delta, s, F) we define L(M) = \{w \in \Sigma^* : ((s, w) \vdash^*_M (q, e)) \text{ for some } q \in K\} no Must be: for some q \in F

Q7 Given M = (K, \Sigma, \delta, s, F) we define L(M) = \{w \in \Sigma^* : \exists_{q \in K} ((s, w) \vdash^*_M (q, e))\} no Must be: \exists_{q \in F} ((s, w) \vdash^*_M (q, e))
```

Observe that **Q7** is really the **Q6** written in symbolic way correctly using the symbol of existential quantifier

```
Q8 If M = (K, \Sigma, \delta, s, F) is a deterministic, then M is also
non-deterministic
yes The function \delta is a (special) relation on K \times \Sigma \times K, i.e.
\delta \subset K \times \Sigma \times K \subset K \times \Sigma \cup \{e\} \times K \subset K \times \Sigma^* \times K
Q9 For any automata M, we have that L(M) \neq \emptyset
      Take M with \Sigma = \emptyset or F = \emptyset then we get L(M) = \emptyset
Q10 For any DFA M = (K, \Sigma, \delta, s, F),
e \in L(M) if and only if s \in F
       this is the DFA Theorem
```

Q11
$$M = (K, \Sigma, \Delta, s, F)$$
 is non-deterministic when $\Delta \subseteq K \times \Sigma^* \times K$

no we must say: \triangle is finite

Q12 $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

yes this is book definition; do not need to say Δ is a finite set, as the set $K \times (\Sigma \cup \{e\}) \times K$ is always finite

Q13 The set of all configurations of any non-deterministic state automata is always non-empty

yes the set of all configuration of NDFA is by definition

$$K \times \Sigma^* = \{(q, w) : q \in K, w \in \Sigma^*\}$$
 and we have that $(s, e) \in K \times \Sigma^*$ even when $\Sigma = \emptyset$ as always $s \in K$, $e \in \Sigma^*$

- **Q14** We say that two automata M_1, M_2 (deterministic or nondeterministic) are the same, i.e. $M_1 = M_2$ if and only if $L(M_1) = L(M_2)$
- **no** we say that M_1 , M_2 are **equivalent**, i.e. $M_1 \approx M_2$ if and only if $L(M_1) = L(M_2)$
- **Q15** For any DFA $\frac{M}{M}$, there is is a NDFA $\frac{M'}{M}$, such that $\frac{M}{M} \approx \frac{M'}{M}$
- yes This is the Equivalency Theorems 1
- **Q16** For any NDFA M, there is is a DFA M', such that $M \approx M'$
- yes This is the Equivalency Theorems 2

Q17 If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture

yes
$$\Sigma \cup \{e\} \subseteq \Sigma^*$$

Q18 We define, for any (deterministic or non-deterministic $M = (K, \Sigma, \Delta, s, F)$ a **computation** of the length n from (q, w) to (q', w') as a **sequence**

$$(q_1, w_1), (q_2, w_2), ..., (q_n, w_n), n \ge 1$$

of configurations, such that

$$q_1 = q, \ q_n = q', \ w_1 = w, \ w_n = w'$$
 and $(q_i, w_i) \vdash^*_M (q_{i+1}, w_{i+1})$ for $i = 1, 2, ... n - 1$

Statement: For any M a computation (q, w) exists

yes By definition a computation of length one (case n=1) always exists

For all **short questions** given on Quizzes and Tests you will have to do the following

- 1. Decide and explain whether the diagram represents a DFA, NDFA or does not
- 2. List all components of M when it represents DFA, NDFA
- 3. Describe L(M) as a regular expression when it represents DFA, NDFA

- **1.** Yes, it represents a DFA; δ is a function on $\{q_0, q_1\} \times \{a\}$ and initial state $s = q_0$ exists
- **2.** $K = \{q_0, q_1\}, \ \Sigma = \{a\}, \ s = q_0, \ F = \{q_1\}, \ \delta(q_0, a) = q_1, \ \delta(q_1, a) = q_1$
- 3. $L(M1) = aa^*$

- **1.** Yes, it represents a DFA; δ is a function on $\{q_0\} \times \{a\}$ and initial state $s = q_0$ exists
- **2.** $K = \{q_0\}, \ \Sigma = \{a\}, \ s = q_0, \ F = \emptyset, \ \delta(q_0, a) = q_0$
- **3.** $L(M2) = \emptyset$

- **1.** Yes, it represents a DFA; initial state $s = q_0$ exists
- **2.** $K = \{q_0\}, \ \Sigma = \emptyset, \ s = q_0, \ F = \emptyset, \ \delta = \emptyset$
- **3.** $L(M3) = \emptyset$

Consider a diagram M4

- **1.** Yes, it represents a DFA; initial state $s = q_0$ exists
- **2.** $K = \{q_0\}, \ \Sigma = \{a\}, \ s = q_0, \ F = \{q_0\}, \ \delta(q_0, a) = q_0$
- 3. $L(M4) = a^*$

Remark $e \in L(M4)$ by DFA Theorem, as $s = q_0 \in F = \{q_0\}$

Consider a diagram M5

1. NO! it is NOT neither DFA nor NDFA - initial state does not exist

- **1.** It is not a DFA; Initial state does exist, but δ is not a function; $\delta(q_0, b)$ is **not defined** and we didn't say "plus **trap states**"
- 2. It is a NDFA
- **3.** $L(M6) = \emptyset$

Consider a diagram M7

1. Yes! it is a DFA with trap states Initial state exists and we can complete definition of δ by adding a **trap state** as pictured below

Consider again diagram M7

2. If we do not say "plus trap states" it represents a NDFA with

$$\Delta = \{(q_0, a, q_1), (q_1, a, q_1), (q_1, b, q_1)\}$$

3.
$$L(M7) = \emptyset$$
 as $F = \emptyset$

There is much more Short Questions examples in the section SHORT PROBLEMS at the end of Lecture 5

Problem 1

Construct deterministic M such that

$$L(M) = \{ w \in \Sigma^* : w \text{ has an odd number of a 's} \}$$

and an even number of of b 's $\}$

Solution

Here is the **short diagram** - we must say: plus trap states

Problem 2

Construct a DFA M such that

 $L(M) = \{w \in \{a, b\}^* : \text{ every substring of length 4 in word w}$ contains at least one b }

Solution Here is a **short pattern diagram** (the trap states are not included)

Problem 3

Construct a DFA M such that

$$L(M) = \{w \in \{a, b\}^* : \text{ every word } w \text{ contains}$$

an even number of sub-strings ba \}

Solution Here is a pattern diagram

Zero is an even number so we must have that $e \in L(M)$, i.e. we have to make the initial state also a final state

Problem 4

Construct a DFA M such that

$$L(M) = \{w \in \{a, b\}^* : w \text{ has abab as a substring } \}$$

Solution The essential part of the **diagram** must produce abab and it can be surrounded by proper elements on both sides and can be repeated

Here is the essential part of the diagram

Problem 4 Solutions

We complete the essential part following the fact that it can be surrounded by proper elements on both sides and can be repeated

Here is the diagram of M

Observe that this is a **pattern diagram**; you need to add names of states only if you want to list all components

M does not have trap states

Problem 5

Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*$$

Specify all components K, Σ, Δ, s, F of M and draw a state diagram

Justify your construction by listing some strings accepted by the state diagram

Problem 5 Solutions

Solution 1

We use the lecture definition

Components of *M* are:

$$\Sigma = \{a, b\}, K = \{q_0, q_1\}, s = q_0, F = \{q_0, q_1\}$$

We define △ as follows

$$\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}$$

Strings accepted: ab, abab, abba, babba, ababbaba,

Problem 5 Solutions

Solution 2

We use the book definition

Components of *M* are:

$$\Sigma = \{a, b\}, \ K = \{q_0, q_1, q_2, q_3\}, \ s = q_0, \ F = \{q_2\}$$

We define \triangle as follows

$$\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), q_2, b, q_3), (q_3, a, q_2)\}$$

Strings accepted: ab, abab, abba, babba, ababbaba,

Problem 6

Let
$$M = (K, \Sigma, s, \Delta, F)$$
 for $K = \{q_0, q_1, q_2, q_3, \}, s = q_0, \Sigma = \{a, b, c\}, F = \{q_3\}$ and

$$\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_1, bb, q_3), (q_0, b, q_2), (q_2, aa, q_3)\}$$

Find the regular expression describing the L(M).

Simplify it as much as you can. Explain your steps

Solution

$$L(M) = (abc)^*abbb \cup abbb \cup (abc)^*baa \cup ba = (abc)^*abbb \cup (abc)^*baa(abc)^*(abbb \cup baa)$$

We used the property: $LL_1 \cup LL2 = L(L_1 \cup L_2)$

Problem 7

Let
$$M = (K, \Sigma, s, \Delta, F)$$
 for $K = \{q_0, q_1, q_2, q_3, \}, s = q_0, \Sigma = \{a, b, c\}, F = \{q_3\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_1, bb, q_3), (q_0, b, q_2), (q_2, aa, q_3)\}$

Write down (you can draw the diagram) an automaton M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

We apply the "stretching" technique to M and the new M' is is as follows.

$$\begin{aligned} & \textit{M}' = (\textit{K} \cup \{p_1, p_2, ..., p_5\} \; \Sigma, \; \textit{s} = \textit{q}_0, \; \Delta', \; \textit{F}' = \textit{F} \;) \\ & \Delta' = \{(\textit{q}_0, \textit{b}, \textit{q}_2), (\textit{q}_0, \textit{a}, \textit{p}_1), \; (\textit{p}_1, \textit{b}, \textit{p}_2), \; (\textit{p}_2, \textit{c}, \textit{q}_0), \; (\textit{q}_0, \textit{a}, \textit{p}_3), \\ & (\textit{p}_3, \textit{b}, \textit{q}_1), (\textit{q}_1, \textit{b}, \textit{p}_4), \; (\textit{p}_4, \textit{b}, \textit{q}_3), (\textit{q}_0, \textit{b}, \textit{q}_2), \; (\textit{q}_2, \textit{a}, \textit{p}_5), \; (\textit{p}_5, \textit{a}, \textit{q}_3)\} \end{aligned}$$

I will NOT include this problem on **Q2**, but you have to know how to solve similar problems for **Midterm**

Problem 8

Let M be defined as follows

$$M=(K,\; \Sigma,\; s,\; \Delta,\; F\;)$$
 for $K=\{q_0,q_1,q_2\},\; s=q_0,\; \Sigma=\{a,b\},\; F=\{q_0,q_2\}\;$ and $\Delta=\{(q_0,a,q_1),\; (q_1,b,q_2),\; (q_1,b,q_0),\; (q_2,a,q_0)\}$

Write 4 steps of the general method of transformation a NDFA M, into an **equivalent** M', which is a DFA

Problem 8

Reminder

$$E(q)=\{p\in K: (q,e)\vdash^*_M(p,e)\}$$
 and
$$\delta(Q,\sigma)=\bigcup_{p\in K}\{E(p):\ \exists_{q\in Q}\ (q,\sigma,p)\in\Delta\}$$

Step 1

Evaluate
$$\delta(E(q_0), a)$$
 and $\delta(E(q_0), b)$

Step i+1]

Evaluate δ on all states that result from **Step** i

Problem 8

Solution

$$\delta(Q,\sigma) = \bigcup_{p \in K} \{ E(p) : \exists_{q \in Q} (q,\sigma,p) \in \Delta \}$$

Step 1

$$E(q_0) = \{q_0\}, \ E(q_1) = \{q_1\}, \ E(q_2) = \{q_2\}$$

 $\delta(\{q_0\}, a) = E(q_1) = \{q_1\}, \quad \delta(\{q_0\}, b) = \emptyset\}$

Step 2

$$\begin{split} \delta(\emptyset,a) &= \emptyset, \ \delta(\emptyset,a) = \emptyset, \ \delta(\{q_1\},a) = \emptyset, \\ \delta(\{q_1\},b) &= E(q_0) \cup E(q_2) = \{q_0,q_2\} \in F' \end{split}$$

Problem 8

Solution

$$\delta(Q,\sigma) = \bigcup_{p \in K} \{ E(p) : \exists_{q \in Q} (q,\sigma,p) \in \Delta \}$$

Step 3

$$\delta(\{q_0,q_2\},a) = E(q_1) \cup E(q_0) = \{q_0,q_1\}, \quad \delta(\{q_0,q_2\},b) = \emptyset$$

Step 4

$$\delta(\{q_0, q_1\}, a) = \emptyset \cup E(q_1) = \{q_1\},$$

$$\delta(\{q_0, q_1\}, b) = \emptyset \cup E(q_0) \cup E(q_2) = \{q_0, q_2\} \in F'$$