
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska

LECTURE 6

CHAPTER 2
FINITE AUTOMATA

1. Deterministic Finite Automata DFA

2. Nondeterministic Finite Automata NFA

3. Finite Automata and Regular Expressions

4. Languages that are Not Regular

5. State Minimization

CHAPTER 2
PART 2: Nondeterministic Finite Automata NDFA

NDFA: Nondeterministic Finite Automata

Now we add a new powerful feature to the finite automata

This feature is called nondeterminism

Nondeterminism is essentially the ability to change states

in a way that is only partially determined by the current

state and input symbol, or a string of symbols, empty string

included

The automaton, as it reads the input string, may choose at
each step to go to any of its states

The choice is not determined by anything in our model , and
therefore it is said to be nondeterministic

At each step there is always a finite number of choices,
hence it is still a finite automaton

NDFA - Mathematical Model

Class Definition
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
∆ is a finite set and

∆ ⊆ K × Σ∗ × K

∆ is called the transition relation
We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

NDFA Definition

Class Definition revisited
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ as an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
∆ is a finite set and ∆ ⊆ K × Σ∗ × K
∆ is called the transition relation
∆ can be ∅ - case to consider

Some Remarks

R1 We must say that ∆ is a finite set because the set
K × Σ∗ × K is countably infinite, i.e. |K × Σ∗ × K | = ℵ0) and
we want to have a finite automata and we defined it as

∆ ⊆ K × Σ∗ × K

R2 The DFA transition function δ : K × Σ −→ K is (as
any function!) a relation

δ ⊆ K × Σ × K

R3 The set δ is always finite as the set K × Σ × K is finite

R4 The DFA transition function δ is a particular case of the

NDFA transition relation ∆, hence similarity of notation

NDFA Diagrams

We extend the notion of the state diagram to the case of the

NDFA in natural was as follows

(q1,w, q2) ∈ ∆ means that M in a state q1 reads the word

w ∈ Σ∗ and goes to the state q2

Picture

Remember that in particular w = e

Examples

Example 1

Let M be given by a diagram

By definition M is not a deterministic DFA as it reads e ∈ Σ∗

L(M) = {e}

Examples

Example 2
Let M1 be given by a diagram

Observe that M1 is not a deterministic DFA as
(q, a, q1) ∈ ∆ and (q, a, q2) ∈ ∆ what proves that ∆ is
not a function

L(M1) = {a}

Examples

Example 3

Let M be given by a diagram

M is not a deterministic DFA as (q2, e, q0) ∈ ∆ and this is
not admitted in DFA

∆ = {(q0, a, q1), (q1, b , q0), (q1, b , q2), (q2, a, q0), (q2, e, q0)}

Examples

Example 4

Let M be given by a diagram

M is not a deterministic DFA as (q, ab , q1) ∈ ∆ and this is
not admitted in DFA

∆ = {(q, ba, q), (q, ab , q1), (q, e, q3)} and F = ∅

L(M1) = ∅

NDFA - Book Definition

Book Definition
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where

K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
∆ , the transition relation is defined as

∆ ⊆ K × (Σ ∪ {e}) × K

Observe that ∆ is finite set as both K and Σ ∪ {e} are

finite sets

Book Definition Example

Example

Let M be automaton from Example 3 given by a diagram

M follows the Book Definition as

∆ ⊆ K × (Σ ∪ {e}) × K

Equivalence of Definitions

The Class and the Book definitions are equivalent

1. We get the Book Definition as a particular case of the
Class Definition as

Σ ∪ {e} ⊆ Σ∗

2. We will show later a general method how to transform
any automaton defined by the Class Definition into an
equivalent automaton defined by the Book Definition

When solving problems you can use any of these definitions

Configuration and Transition Relation

Given a NDFA automaton

M = (K , Σ, ∆, s, F)

We define as we did in the case of DFA the notions of

a configuration, and a transition relation

Definition

A configuration in a NDFA is any tuple

(q,w) ∈ K × Σ∗

Configuration and Transition Relation

Definition
A transition relation in M = (K , Σ, ∆, s, F)

defined by the Class Definition is a binary relation

`M ⊆ (K × Σ∗) × (K × Σ∗)

such that q, q′ ∈ K , u, w ∈ Σ∗

(q, uw) `M (q′,w)

if and only if

(q, u, q′) ∈ ∆

For M defined by the Book Definition definition of the
Transition Relation is the same but for the fact that

u ∈ Σ ∪ {e}

Language Accepted by M

We define, as in the case of the deterministic DFA , the
language accepted by the nondeterministic M as follows

Definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for q ∈ F}

where `M∗ is the reflexive, transitive closure of `M

Equivalency of Automata

We define now formally an equivalency of automata as follows

Definition

For any two automata M1,M2 (deterministic or
nondeterministic)

M1 ≈ M2 if and only if L(M1) = L(M2)

Now we are going to formulate and prove the main theorem of

this part of the Chapter 2, informally stated as

Equivalency Statement

The notions of a deterministic and a non-dederteministic

automata are equivalent

Equivalency of Automata Theorems

The Equivalency Statement consists of two Equivalency
Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency of Automata Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Proof

Any DFA M is a particular case of a DFA M’ because any
function δ is a relation

Moreover δ and its a particular case of the relation ∆ as
Σ ⊆ Σ ∪ {e} (for the Book Definition) and Σ ⊆ Σ∗ (for the
Class Definition)

This ends the proof

Equivalency of Automata Theorems

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that
M ≈ M′, i.e. such that

L(M) = L(M′)

Proof

The proof is far from trivial. It is a constructive proof;

We will describe, given a NDFA M, a general method of

construction step by step of an DFA M’ that accepts

the came language as M

Before we define the poof construction we discuss some
examples and some general automata properties

EXAMPLES and QUESTIONS

Examples

Example 1

Here is a diagram of NDFA M1 - Class Definition

L(M1) = (ab ∪ aba)∗

Examples

Example 2
Here is a diagram of NDFA M2 - Book Definition

Observe that M2 is not deterministic (even if we add ”plus
trap states) because ∆ is not a function as (q1, b , q0) ∈ ∆
and (q1, b , q2) ∈ ∆

L(M2) = (ab ∪ aba)∗

Examples

Example 3

Here is a diagram of NDFA M3 - Book Definition

Observe that M2 is not deterministic (q1, e, q0) ∈ ∆

L(M3) = (ab ∪ aba)∗

Question 1

All automata in Examples 1-3 accept the same language,
hence by definition, they are equivalent nondeterministic
automata, i.e.

M1 ≈ M2 ≈ M3

Question 1

Construct a deterministic automaton M4 such that

M1 ≈ M2 ≈ M3 ≈ M4

Question1 Solution

Here is a diagram of deterministic DFA M4

Observe that q4 is a trap state

L(M4) = (ab ∪ aba)∗

Question 2

Given an alphabet

Σ = {a1, a2, . . . , an} for n ≥ 2

Question 2

Construct a nondeterministic automaton M such that

L = {w ∈ Σ∗ : at least one letter from Σ is missing in w }

Take n = 4, i.e. Σ = {a1, a2, a3, a4}

Some words in L are:

e ∈ L , a1 ∈ L , a1a2a3 ∈ L , a1a2a2a3a3 ∈ L a1a4a1a2 ∈ L , . . .

Question 2 Solution

Here is solution for n = 3, i.e. Σ = {a1, a2, a3}

Write a solution for n = 4

Question 2 Solution

Here is the solution for n = 4, i.e. Σ = {a1, a2, a3, a4}

Write a general form of solution for n ≥ 2

Question 2 Solution

General case

M = (K , Σ, ∆, s, F) for Σ = {a1, a2, . . . , an} and n ≥ 2,

K = {s = q0, q1, . . . , qn}, F = K − {q0} , or F = K and

∆ =
⋃n

i=1
{(q0, e, qi)} ∪

⋃n

i,j=1
{(qi , aj , qi) : i , j}

i , j means that ai is missing in the loop at state qi

PROPERTIES
Equivalence of Two Definitions

Equivalence of Two Definitions

Book Definition (BD)

∆ ⊆ K × (Σ ∪ {e}) × K

Class Definition (CD)

∆ is a finite set and

∆ ⊆ K × Σ∗ × K

Fact 1

Any (BD) automaton M is a (CD) automaton M

Proof

The (BD) of ∆ is a particular case of the (CD) as

Σ ∪ {e} ⊆ Σ∗

Equivalence of Two Definitions

Fact 2

Any (CD) automaton M can be transformed into an

equivalent (BD) automaton M ’

Proof

We use a ” streching ” technique

For any w , e, w ∈ Σ∗ and (CD) transition (q,w, q′) ∈ ∆,

we transform it into a sequence of (BD) transactions each

reading only σ ∈ Σ that will at the end read the whole

word w ∈ Σ∗

We leave the transactions (q, e, q′) ∈ ∆ unchanged

Stretching Process

Consider w = σ1, σ2, . . . σn and a transaction (q,w, q) ∈ ∆
as depicted on the diagram

We construct ∆′ in M ’ by replacing the transaction
(q, σ1, σ2, . . . σn, q) by

(q, σ1, p1), (p1, σ2, p2), . . . (pn−1, σn, q)

and adding new states p1, p2, . . . pn−1 to the set K of M
making at this stage

K ′ = K ∪ {p1, p2, . . . pn−1}

Stretching Process

This transformation is depicted on the diagram below

We proceed in a similar way in a case of w = σ1, σ2, . . . σn

and a transaction (q,w, q′) ∈ ∆

Equivalent M’

We proceed to do the ”stretching” for all (q,w, q′) ∈ ∆ for
w , e and take as

K ′ = K ∪ P

where P = {p : p added by stretching for all (q,w, q′) ∈ ∆}

We take as

∆ = ∆Σ ∪ {(q, σi , p) : p ∈ P,w = σ1, . . . σn, (q,w, q′) ∈ ∆}

where

∆Σ = {(q, σ, q′) ∈ ∆ : σ ∈ (Σ ∪ {e}), q, q′ ∈ K }

Proof of Equivalency of DFA and NDFA

Equivalency of DFA and NDFA

Let’s now go back now to the Equivalency Statement that

consists of the following two equivalency theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

This is already proved

Equivalency Theorem 2

For any NDFA M, there is a DFA M’, such that M ≈ M′, i.e.
such that

L(M) = L(M′)

This is to be proved

Equivalency Theorem

Our goal now is to prove the following

Equivalency Theorem 2

For any nondeterministic automaton

M = (K , Σ, ∆, s, F)

there is, i.e. we give an algorithm for its construction a

deterministic automaton

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

such that
M ≈ M′

i.e.
L(M) = L(M′)

General Remark

General Remark

We base the proof of the equivalency of DFA and NDFA

automata on the Book Definition of NDFA

Let’s now explore some ideas laying behind the main points

of the proof

They are based on two differences between the DFA

and NDF automata

We discuss now these differences and basic ideas how to

overcome them, i.e. how to ”make” a deterministic automaton

out of a nonderetministic one

NDFA and DFA Differences

Difference 1

DFA transition function δ even if expressed as a relation

δ ⊆ K × Σ × K

must be a function, while the NDFA transition relation ∆

∆ ⊆ K × (Σ ∪ {e}) × K

may not be a function

NDFA and DFA Differences

Difference 2

DFA transition function δ domain is the set

K × Σ

while NDFA transition relation ∆ domain is the set

K × Σ ∪ {e}

Observe that the NDFA transition relation ∆ may contain a

configuration (q, e, q′) that allows a nondeterministic
automaton to read the empty word e, what is not allowed

in the deterministic case

In order to transform a nondeterministic M into an
equivalent deterministic M’ we have to eliminate the both
Differences 1 and 2

Example

Let’s look first at the following

Example

M = ({q0, q1, q2, q3}, Σ = {a, b}, ∆, s = q0, F = {q2})

∆ = {(q0, a, q1), (q1, b , q0), (q1, b , q2), (q2, a, q0)}

Diagram of M

Example

The non-function part of the diagram is

Question

How to transform it into a FUNCTION???

IDEA 1: make the states of M’ as some SETS made out of
states of M and put in this case

δ({q1}, b) = {q0, q2}

IDEA ONE

IDEA 1: we make the states of M’ as some SETS made out
of states of M

We read other transformation from the Diagram of M

δ({q0}, a) = {q1}, δ({q2}, a) = {q0} and of course

δ({q1}, b) = {q0, q2}

We make the state {q0} the initial state of M’ as q0 was the
initial state of M and

we make the states {q0, q2} and {q2} final states of M’ and
as q2 was a final state of M

Example

We have constructed a part of

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

The Unfinished Diagram is

There will be many trap states

Example Revisited

In the case of our Example we had K = {q0, q1, q2}

K ′ = 2K has 23 states

The portion of the unfinished diagram of M’ is

It is obvious that even the finished diagram will have A LOT of

trap states

Difference 2 and Idea Two

Difference 2 and Idea Two - how to eliminate the e
transitions

Example 1

Consider M1

Observe that we can go from q0 to q1 reading only e, i.e.

without reading any input symbol σ ∈ Σ

L(M1) = a

Examples

Example 2

Consider M2

Observe that we can go from q1 to q2 reading only e, i.e.

without reading any input symbol σ ∈ Σ

L(M2) = a

Examples

Example 3

Consider M3

Observe that we can go from q2 to q3 and from q1 to q3

without reading any input

L(M3) = a ∪ b

Idea Two - Sets E(q)

The definition of the transition function δ of M’ uses the
following

Idea Two: a move of M’ on reading an input symbol σ ∈ Σ
imitates a move of M on input symbol σ, possibly followed by

any number of e-moves of M

To formalize this idea we need a special definition

Definition of E(q)

For any state q ∈ K , let E(q) be the set of all states in M they

are reachable from state q without reading any input, i.e.

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

Sets E(q)

Fact 1

For any state q ∈ K we have that q ∈ E(q)

Proof

By definition

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

and by the definition of reflexive, transitive closure `M∗ the
trivial path (case n=1) always exists, hence

(q, e) `M
∗ (q, e)}

what proves that q ∈ E(q)

Sets E(q)

Observe that by definitions of `M∗ and E(q) we have that

Fact 2

1. E(q) is a closure of the set {q} under the relation

{(p, r) : there is a transition (p, e, r) ∈ ∆}

2. E(q) can be computed by the following

Algorithm

Initially set E(q) := {q}

while there is (p, e, r) ∈ ∆ with p ∈ E(q) and r < E(q)

do: E(q) := E(q) ∪ {r}

Example

We go back to the Example 1, i.e.

Consider M1

We evaluate

E(q0) = {q0, q1}, E(q1) = {q1}, E(q2) = {q2}

Remember that always q ∈ E(q)

Definition of M’

Definition of M’

Given a nondeterministic automaton M = (K , Σ, ∆, s, F)

we define the deterministic automaton M’ equivalent to M as

M′ = (K ′, Σ, δ′, s′, F ′)

where
K ′ = 2K , s′ = {s}

F ′ = {Q ⊆ K : Q ∩ F , ∅}

δ′ : 2K × Σ −→ 2K is such that and for each Q ⊆ K and for
each σ ∈ Σ

δ′(Q , σ) =
⋃
{E(p) : p ∈ K and (q, σ, p) ∈ ∆ for some q ∈ Q}

Definition of δ′

Definition of δ′

We re-write the definition of δ′ in a a following form that is
easier to use

δ′ : 2K × Σ −→ 2K is such that and for each Q ⊆ K and for
each σ ∈ Σ

δ′(Q , σ) =
⋃
p∈K

{E(p) : (q, σ, p) ∈ ∆ for some q ∈ Q}

or we write it in a more clear form as

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Construction of of M’

Given a nondeterministic automaton M = (K , Σ, ∆, s, F)

Here are the STAGES to follow when constructing M’

STAGE 1

1. For all q ∈ K , evaluate E(q)

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

2. Evaluate initial and final states: s′ = E(s) and

F ′ = {Q ⊆ K : Q ∩ F , ∅}

STAGE 2

Evaluate δ′(Q , σ) for σ ∈ Σ, Q ∈ 2K

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Evaluation of δ′

Observe that domain of δ′ is 2K × Σ and can be very large

We will evaluate δ′ only on states that are relevant to the

operation of M’ and making all other states trap states

We do so to assure that

M′ ≈ M

i.e. to be able to prove that

L(M) = L(M′)

Having this in mind we adopt the following definition

Evaluation of δ′

Definition

We say that a state Q ∈ 2K is relevant to the operation

of M’ and to the language L(M’) if it can be reached from

the initial state s′ = E(s) by reading some input string

Obviously, any state Q ∈ 2K that is not reachable from the

initial state s’ is irrelevant to the operation of M’ and to

the language L(M’)

Construction of of M’ Example

Example
Let M be defined by the following diagram

STAGE 1
1. For all q ∈ K , evaluate E(q)
M does not have e -transitions so we get
E(q0) = {q0}, E(q1) = {q1}, E(q2) = {q2}

2. Evaluate initial and some final states: s′ = E(q0) = {q0}

and {q2} ∈ F ′

δ′ Evaluation

STAGE 2

Here is a General Procedure for δ′ evaluation

Evaluate δ′(Q , σ) only for relevant Q ∈ 2K , i.e. follow

the steps below

Step 1 Evaluate δ′(s′, σ) for all σ ∈ Σ, i.e. all states
directly reachable from s′

Step (n+1)

Evaluate δ′ on all states that result from the Step n, i.e. on
all states already reachable from s’

Remember

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Example STAGE 2

Diagram

STAGE 2

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Step 1 We evaluate δ′({q0}, a) and δ′({q0}, b)

We look for the transitions from q0

We have only one (q0, a, q1) ∈ ∆ so we get
δ′({q0}, a) = E(q1) = {q1}

There is no transition (q0, b , p) ∈ ∆ for any p ∈ K , so we
get δ′({q0}, b) = E(p) = ∅

Example STAGE 2

By the Step 1 we have that all states directly reachable from
s′ are {q2} and ∅

Step 2 Evaluate δ′ on all states that result from the Step 1;
i.e. on states {q1} and ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q1}, a), δ′({q1}, b) we first look at all
transitions (q1, a, p) ∈ ∆ on the diagram

There is no transition (q1, a, p) ∈ ∆ for any p ∈ K , so

δ′({q1}, a) = ∅ and δ′(∅, a) = ∅, δ′(∅, b) = ∅

Example STAGE 2

Step 2 To evaluate δ′({q1}, b) we now look at all transitions
(q1, b , p) ∈ ∆ on the diagram

Here they are: (q1, b , q2), (q1, b , q0)

δ′(Q , σ) =
⋃

p∈K {E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

δ′({q1}, b) = E(q2) ∪ E(q0) = {q2} ∪ {q0} = {q0, q2}

We evaluated

δ′({q1}, b) = {q0, q2}, δ′({q1}, a) = ∅

We also have that the state {q0, q2} ∈ F ′

Example STAGE 2

Step 3 Evaluate δ′ on all states that result from the Step 2;
i.e. on states {q0, q2}, ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q0, q2}, a) we look at all transitions (q0, a, p)
and (q2, a, p) on the diagram

Here they are: (q0, a, q1), (q2, a, q0)

δ′({q0, q2}, a) = E(q1) ∪ E(q0) = {q0, q1}

Similarly δ′({q0, q2}, b) = ∅

Diagram Steps 1 - 3

Here is the Diagram of M’ after finishing STAGE 1 and Steps
1-3 of the STAGE 2

Example STAGE 2

Step 4 Evaluate δ′ on all states that result from the Step 3;
i.e. on states {q0, q1}, ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q0, q1}, a) we look at all transitions (q0, a, p)
and (q1, a, p) on the diagram

Here there is one (q0, a, q1), and there is no transition
(q1, a, p) for any p ∈ K , so

δ′({q0, q1}, a) = E(q1) ∪ ∅ = {q1}

Similarly
δ′({q0, q1}, b) = {q0, q2}

Example STAGE 2

Step 5 Evaluate δ′ on all states that result from the Step 4;
i.e. on states {q1} and {q0, q2}

Observe that we have already evaluated δ′({q1}, σ) for all
σ ∈ Σ in Step 2 and δ′({q0, q2}, σ) in Step 3

The process of defining δ′(Q , σ) for relevant Q ∈ 2K is
hence terminated

All other states are trap states

Diagram of of M’

Here is the Diagram of the Relevant Part of M’

and here is its short pattern diagram version

Book Example

Book Example
Here is the nondeterministic M from book page 70
Exercise Read the example and re- write it as an exercise
stage by stage as we did in class - it means follow the
previous example
Diagram of M

Book Example

STAGE 1

STAGE 2 evaluation are on page 72

Evaluate them independently of the book

Book Example

Diagram of M’

Book Example

Some book computations

Book Diagram

NDFA and DFA Differences Revisited

Difference 1 Revisited

DFA transition function δ even if expressed as a relation

δ ⊆ K × Σ × K

must be a function, while the NDFA transition relation ∆

∆ ⊆ K × (Σ ∪ {e}) × K

may not be a function

Difference 2 Revisited

DFA transition function δ domain is the set K × Σ while

It is obvious that the definition of δ′ solves the Difference 2

Difference 1

Given a non-function diagram of M

Proposed IDEA of f solving the Difference 1 was to make
the states of M’ as some subsets of the set of states of M
and put in this case

δ′({q0}, b) = {q1, q2, q3}

Exercise

Given the diagram of M

Exercise
Show that the definition of δ′

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

does exactly what we have proposed, i.e show that

δ′({q0}, b) = {q1, q2, q3}

Proof of Equivalency Theorem

Equivalency Theorem
For any nondeterministic automaton

M = (K , Σ, ∆, s, F)

there is (we have given an algorithm for its construction) a
deterministic automaton

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

such that
M ≈ M′ i.e. L(M) = L(M′)

Proof
M’ is deterministic directly from the definition because the
formula

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

defines a function and is well defined for a all Q ∈ 2K and
σ ∈ Σ.

Proof of Equivalency Theorem

We now claim that the following Lemma holds and we will
prove equivalency M ≈ M′ from the Lemma

Lemma

For any word w ∈ Σ∗ and any states p, q ∈ K

(q,w) `M
∗ (p, e) if and only if (E(q),w) `M′

∗ (P, e)

for some set P such that p ∈ P

We carry the proof of the Lemma by induction on the length
|w | of w

Base Step |w | = 0; this is possible only when t w = e and
we must show

(q, e) `M
∗ (p, e) if and only if (E(q), e) `M′

∗ (P, e)

for some P such that p ∈ P

Proof of Lemma

Base Step We must show that

(q, e) `M
∗ (p, e) if and only if ∃P(p ∈ P ∩ (E(q), e) `M′

∗ (P, e)))

Observe that (q, e) `M
∗ (p, e) just says that p ∈ E(q) and

the right side of statement holds for P = E(q)

Since M’ is deterministic the statement
∃P(p ∈ P ∩ (E(q), e) `M′

∗ (P, e))) is equivalent to saying that
P = E(q) and since p ∈ P we get p ∈ E(q) what is
equivalent to the left side

This completes the proof of the basic step

Inductive step is similar and is given as in the book page 71

Proof of The Theorem

We have just proved that for any w ∈ Σ∗ and any states
p, q ∈ K

(q,w) `M
∗ (p, e) if and only if (E(q),w) `M′

∗ (P, e)

for some set P such that p ∈ P

The proof of the Equivalency Theorem continues now

as follows

Proof of The Theorem

We have to prove that L(M) = L(M’)

Let’ s take a word w ∈ Σ∗

We have (by definition of L(M)) that w ∈ L(M)

if and only if (s,w) `M
∗ (f , e) for f ∈ F

if and only if (E(s),w) `M
∗(Q , e) for some Q such that f ∈ Q

(by the Lemma)

if and only if (s′,w) `M
∗ (Q , e) for some Q ∈ F (by

definition of M’)

if and only if w ∈ L(M′)

Hence L(M) = L(M’)

This end the proof of the Equivalency Theorem

Finite Automata

We have proved that the class (CD) and book (BD)
definitions of a nondeterministic automaton are equivalent

Hence by the Equivalency Theorem deterministic and
ondeterministic automata defined by any of the both ways
are equivalent

We will use now a name

FINITE AUTOMATA

when we talk about deterministic or nondeterministic

automata

