
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska



LECTURE 5



CHAPTER 2
FINITE AUTOMATA

1. Deterministic Finite Automata DFA

2. Nondeterministic Finite Automata NDFA

3. Finite Automata and Regular Expressions

4. Languages that are Not Regular

5. State Minimization



CHAPTER 2
PART 1: Deterministic Finite Automata DFA



Deterministic Finite Automata DFA

Simple Computational Model
Here is a picture

Here are the components of the model
C1: Input string on an input tape written at the beginning of
the tape
The input tape is divided into squares, with one symbol
inscribed in each tape square



DFA - A Simple Computational Model

Here is a picture

C2: ”Black Box” - called Finite Control
It can be in any specific time in one of the finite number of
states {q1, . . . , qn}

C3: A movable Reading Head can sense what symbol is
written in any position on the input tape and moves only
one square to the right



DFA - A Simple Computational Model

Here are the assumptions for the model

A1: There is no output at all;

A2: DFA indicates whether the input is acceptable

or not acceptable

A3: DFA is a language recognition device



DFA - A Simple Computational Model

Operation of DFA

O1 Initially the reading head is placed at left most square

at the beginning of the tape and

O2 finite control is set on the initial state

O3 After reading on the input symbol the reading head

moves one square to the right and enters a new state

O4 The process is repeated

O5 The process ends when the reading head reaches

the end of the tape



DFA - A Simple Computational Model

The general rules of the operation of DFA are

R1 At regular intervals DFA reads only one symbol at the

time from the input tape and enters a new state

R2: The move of DFA depends only on the current state
and the symbol just read



DFA - A Simple Computational Model

Operation of DFA

O6 When the process stops the DFA indicates its approval
or disapproval of the string by means of the final state

O7 If the process stops while being in the final state, the
string is accepted

O8 If the process stops while not being in the final state,
the string is not accepted



Language Accepted by DFA

Informal Definition

Language accepted by a Deterministic Finite Automata is
equal to the set of strings accepted by it



DFA - Mathematical Model

To build a mathematical model for DFA we need to include
and define the following components

FINITE set of STATES

ALPHABET Σ

INITIAL state

FINAL state

Description of the MOVE of the reading head is as follows

R1 At regular intervals DFA reads only one symbol at the
time from the input tape and enters a new state

R2: The MOVE of DFA depends only on the current state
and the symbol just read



DFA - Mathematical Model

Definition
A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where

K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
δ is a function

δ : K × Σ −→ K

called the transition function
We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅



DFA Definition

Definition revisited
A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ as an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
δ is a function

δ : K × Σ −→ K

called the transition function



Transition Function

Given DFA

M = (K , Σ, δ, s, F)

where
δ : K × Σ −→ K

Let
δ(q, σ) = q′ for q, q′ ∈ K , σ ∈ Σ

means: the automaton M in the state q reads σ ∈ Σ and

moves to a state q′ ∈ K , which is uniquely determined by

state q and σ just read



Configuration

In order to define a notion of computation of M on
an input string w ∈ Σ∗ we introduce first a notion of
a configuration
Definition
A configuration is any tuple

(q,w) ∈ K × Σ∗

where q ∈ K represents a current state of M
and w ∈ Σ∗ is unread part of the input
Picture



Transition Relation

Definition

The set of all possible configurations of M = (K , Σ, δ, s, F)

iis just
K × Σ∗ = {(q,w) : q ∈ K , w ∈ Σ∗}

We define move of an automaton M i in terms of a transition
relation

`M

The transition relation acts between two configurations
and hence `M is a certain binary relation defined on K × Σ∗,
i.e.

`M ⊆ (K × Σ∗)2

Formal definition follows



Transition Relation

Definition

Given M = (K , Σ, δ, s, F)

A binary relation
`M ⊆ (K × Σ∗)2

is called a transition relation when for any

q, q′ ∈ K , w1,w2 ∈ Σ∗ the following holds

(q,w1) `M (q′,w2)

if and only if

1. w1 = σw2, for some σ ∈ Σ (M looks at σ )

2. δ(q, σ) = q′ ( M moves from q to q’ reading σ in w1 )



Transition Relation

Definition (Transition relation short definition )

Given M = (K , Σ, δ, s, F)

For any q, q′ ∈ K , σ ∈ Σ, w ∈ Σ∗

(q, σw) `M (q′,w)

if and only if

δ(q, σ) = q′



Idea of Computation

We use the transition relation to define a move of M along a
given input, i.e. a given w ∈ Σ∗

Such a move is called a computation

Example

Given M such that K = {s, q} and let `M be a transition
relation such that

(s, aab)`M(q, ab)`M(s, b)`M(q, e)

We call a sequence of configurations

(s, aab), (q, ab), (s, b), (q, e)

a computation from (s, aab) to (q, e) in automaton M



Idea of Computation

Given a a computation

(s, aab), (q, ab), (s, b), (q, e)

We write this computation in a more general form as

(q1, aab), (q2, ab), (q3, b), (q4, e)

for q1, q2, q3, q4 being a specific sequence of states from
K = {s, q}, namely q1 = s, q2 =, q3 = s, q4 = q and say
that the length of this computation is 4

In general we write any computation of length 4 as

(q1,w1), (q2,w2), (q3,w3), (q4,w4)

for any sequence q1, q2, q3, q4 of states from K and

words wi ∈ Σ∗



Idea of the Computation

Example

Given M and the computation

(s, aab), (q, ab), (s, b), (q, e)

We say that the word w= aab is accepted by M if and only if

1. the computation starts when M is in the initial state

- true here as s denotes the initial state

2. the whole word w has been read, i.e. the last configuration
of the computation is (q, e) for certain state in K,

- true as K = {s, q}

3. the computation ends when M is in the final state

- true only if we have that q ∈ F

Otherwise the word w is not accepted by M



Definition of the Computation

Definition
Given M = (K , Σ, δ, s, F)

A sequence of configurations

(q1,w1), (q2,w2), . . . , (qn,wn), n ≥ 1

is a computation of the length n in M from (q,w) to (q′,w′)

if and only if

(q1,w1) = (q,w), (qn,wn) = (q′,w′) and

(qi ,wi) `M (qi+1,wi+1) for i = 1, 2, . . . n − 1

Observe that when n = 1 the computation (q1,w1)

always exists . It is a computation of the length 1, called also
a trivial computation
We also write sometimes the computations as
(q1,w1) `M (q2,w2) `M . . . `M (qn,wn) for n ≥ 1



Definition of the Computation

Given a computations

(q1,w1) `M (q2,w2) `M . . . `M (qn,wn) for n ≥ 1

In the case n = 1, we get only one configuration (q1,w1)

It is a computation of length 1
It is a ZERO STEP computation, as we have zero applications
of the transition relation `M
In the case n = 2 (length 2) we get

(q1,w1) `M (q2,w2)

It is a ONE STEP computation as we have one application of
the transition relation `M
In the case n = 3 (length 3) , we get

(q1,w1) `M (q2,w2) `M (q3,w3)

It is a TWO STEPS computation as we have two
applications of the transition relation `M , etc, etc...



Words Accepted by M

Definition

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if there is a computation

(q1,w1), (q2,w2), . . . , (qn,wn)

such that q1 = s, w1 = w, wn = e and qn = q ∈ F

We re-write it as

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if there is a computation

(s,w), (q2,w2), . . . , (q, e) and q ∈ F

When the computation is such that q < F we say that

the word w is not accepted (rejected) by M



Words Accepted by M

In Plain Words:

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if

there is a computation such that

1. starts with the word w and M in the initial state ,

2. ends when M is in a final state, and

3. the whole word w has been read



Language Accepted by M

Definition

We define the language accepted by M as follows

L(M) = {w ∈ Σ∗ : w is accepted by M}

i.e. we write

L(M) = {w ∈ Σ∗ : (s,w) `M . . . `M (q, e) for some q ∈ F}



Examples

Example 1

Let M = (K , Σ, δ, s, F), where

K = {q0, q1}, Σ = {a, b}, s = q0, F = {q0}

and the transition function δ : K × Σ −→ K

is defined as follows

Question Determine whether ababb ∈ L(M) or
ababb < L(M)



Examples

Solution

We must evaluate computation that starts with the
configuration (q0, ababb) as q0 = s

(q0, ababb) `M use δ(q0, a) = q0

(q0, babb) `M use δ(q0, b) = q1

(q1, abb) `M use δ(q1, a) = q1

(q1, bb) `M use δ(q1, b) = q0

(q0, b) `M use δ(q0, b) = q1

(q1, e) `M end of computation and q1 < F = {q0}

We proved that ababb < L(M)

Observe that we always get unique computations, as δ is a
function, hence he name Deterministic Finite Automaton
(DFA)



Examples

Example 2

Let M1 = (K , Σ, δ, s, F) for all components defined

as in M from Example 1, except that we take now
F = {q0, q1}

We remind that

Exercise Show that now ababb ∈ L(M1)



Language Accepted by M
Revisited

We have defined the language accepted by M as

L(M) = {w ∈ Σ∗ : (s,w) `M . . . `M (q, e) for some q ∈ F}

The question is now- how to write it in a more concise and
elegant way

Answer: use the notion (Chapter 1, Lecture 3) of reflexive,
transitive closure of `M denoted by `M

∗ and now we write

Definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for some q ∈ F}

We write it also using the existential quantifier symbol as

L(M) = {w ∈ Σ∗ : ∃q∈F ((s,w) `M
∗(q, e))



Language Accepted by M
Revisited

In order to justify the following l definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗ (q, e) for some q ∈ F}

We bring back the general notion of a path in a binary relation
R and its reflexive, transitive closure R∗ (Chapter 1)
It follows directly from these definitions that

(q1,w1) `M
∗ (qn,wn)

represents a path

(q1,w1), (q2,w2) . . . , (qn−1,wn−1, (qn,wn)

in the relation `M , which is defined as a computation

(q1,w1) `M (q2,w2) . . . , (qn−1,wn−1`M (qn,wn)

in M from (q1,w1) to (qn,wn)



Language Accepted by M
Revisited

Hence
(s,w) `M

∗ (q, e)

represent a computation

(s,w) `M(q1,w1), . . . , (qn,wn)`M (q, e)

from (s,w) to (q, e),

So define the language L(M) as

L(M) = {w ∈ Σ∗ : (s,w) `M
∗ (q, e) for some q ∈ F}



Example

Example

Let M = (K , Σ, δ, s, F) be automaton from our Example
1, i.e. we have

K = {q0, q1}, Σ = {a, b}, s = q0, F = {q0}

and the transition function δ : K × Σ −→ K is defined as
follows

Question Show that aabba ∈ L(M)



Example

We evaluate

(q0, aabba) `M (q0, abba) `M (q0, bba) `M

(q1, ba) `M(q0, a) `M(q0, e) and q0 = s, q0 ∈ F = {q0}

This proves that

(s, aabba) `M
∗ (q0, e) for q0 ∈ F

By definition
aabba ∈ L(M)



General remark

To define or to give an example of

M = (K , Σ, δ, s, F)

means that one has to specify all its components
K , Σ, δ, s, F

We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

Exercise

Given Σ = {a, b} and K == {q0, q1}

1. Define 3 automata M

2. Define an automaton M, such that L(M) = ∅

3. How many automata M can one define?



Exercise

1. Here are 3 automata M1 −M3

M1 : M1 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q0})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

M2 : M2 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q1

M3 : M3 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, a) = q1, δ(q1, b) = q0



Exercise

2. Define an automaton M, such that L(M) = ∅

Answer: The automata M2 is such that L(M2) = ∅ as there
is no computation that would start at initial state q0 and
end in the final state q1 as in M2 we have that
δ(q0, a) = q0, δ(q0, b) = q0, so we will never reach the final
state q1

Here is another example:

Let M4 be defined as follows

M4 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = ∅)

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

L(M4) = ∅ as there is no computation that would start at
initial state q0 and end in the final state as there is no final
state



Exercise

3. How many automata M can one define?

Observe that all of M must have Σ = {a, b} and
K == {q0, q1} so they differ on the choices of
δ : K × Σ −→ K

By Counting Functions Theorem we have 24 possible
choices for δ

They also can differ on the choices of final states F

There as many choices for final states as subsets of
K == {q0, q1}, i.e. 22 = 4

Additionally we have to count all combinations of choices of δ
with choices of F



Challenge

1. Define an automata M with Σ , ∅ such that L(M) = ∅

2. Define an automata M with Σ = ∅ such that L(M) , ∅

3. Define an automata M with Σ , ∅ such that L(M) , ∅

4. Define an automata M with Σ , ∅ such that L(M) = Σ∗

5. Prove that there always exist an automata M such that
L(M) = Σ∗



DFA State Diagram

As we could see the transition functions can be defined in

many ways but it is difficult to decipher the workings of the
automata they define from their mathematical definition

We usually use a much more clear graphical representation

of the transition functions that is called a state diagram

Definition

The state diagram is a directed graph, with certain additional

information as shown at the picture on next slide



DFA State Diagram

PICTURE 1

States are represented by the nodes

Initial state is shown by a >©

Final states are indicated by a dot in a circle
⊙

Initial state that is also a final state is pictured as >
⊙



DFA State Diagram

PICTURE 2

States are represented by the nodes

There is an arrow labelled a from node q1 to q2 whenever
δ(q1, a) = q2



A Simple Problem

Problem

Given M = (K , Σ, δ, s, F) described by the following
diagram

1. List all components of M

2. Describe L(M) as a regular expression



A Simple Problem

Given the diagram

Components are: M = (K , Σ, δ, s, F) for
Σ = {a, b}, K = {q0, q1, q2},

s = q0, F = {q0, q1} and the transition function is given by
following table



A Simple Problem

2. Describe L(M) as a regular expression, where

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for q ∈ F}

Let’s look again at the diagram of M

Observe that the state q2 does not influence the language
L(M ). We call such state a trap state and say:
The state q2 is a trap state
We read from the diagram that

L(M) = a(a ∪ b)∗ ∪ e as a regular expression

L(M) = {a} ◦ {a, b}∗ ∪ {e} as a set



DFA Theorem

DFA Theorem

For any DFA M = (K , Σ, δ, s, F),

e ∈ L(M) if and only if s ∈ F

where we defined L(M) as follows

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for some q ∈ F}

Proof

Let e ∈ L(M), then by definition (s, e) `M
∗(q, e) and q ∈ F

This is possible only when the computation is of the length
one (case n = 1), i.e when it is (s, e) and s = q, hence s ∈ F

Suppose now that s ∈ F

We know that `M∗ is reflexive, so (s, e) `M
∗(s, e) and as

s ∈ F , we get e ∈ L(M)



Definition of TRAP States of M

Definition

A trap state of a DFA automaton M is any of its states that
does not influence the language L(M ) of M

Example

L(M) = b written in shorthand notation, L(M) = {b}, or
L(M) = L(b) = {b}

States q2, q3 are trap states



TRAP States of M

Given a diagram of M

The state q2 is the trap state and we can write a short
diagram of M as follows

Remember that if you use the short diagram you must add
statement: ” plus trap states”



Short and Pattern Diagrams of M

Definition
A diagram of M with some or all of its trap states removed is
called a short diagram
”Our” M becomes

We can ”shorten” the diagram even more by removing the
names of the states

Such diagram, with names of the states removed is called a
pattern diagram



Pattern Diagrams

Pattern Diagrams are very useful when we want to ”read”
the language M directly out of the diagram
Lets look at M1 given by a diagram

It is obvious that (we write a shorthand notion!)

L(M1) = (a ∪ b)∗ = Σ∗

Remark that the regular expression that defines the
language L(M1) is α = (a ∪ b)∗

We add the description L(M1) = Σ∗ as yet another useful
informal shorthand notation notation



Pattern Diagrams

The pattern diagram for ”our” M is

It is obvious that (we write a shorthand notion!) - must add:
plus trap states

L(M) = aL(M1) ∪ e

We must add e to the language by DFA Theorem, as we have
that s ∈ F
Finally we obtain the following regular expression that defines
the language and write it as

L(M) = a(a ∪ b)∗ ∪ e

We can also write L(M ) in an informal way ( Σ∗ is not a
regular expression) as

L(M) = aΣ∗ ∪ e



Trap States

Why do we need trap states?
Let’s take Σ = {a, b} and let M be defined by a diagram

Obviously, the diagram means that M is such that its language
is L(M) = aa∗

But by definition, δ : K × Σ −→ K and we get from the
diagram

We must ”complete” definition of δ by making it a function
(still preserving the language)
To do so introduce a new state q2 and make it a trap state by
defining δ(q0, b) = q2, δ(q1, b) = q2



Short Problems

For all short problems presented here and given on Quizzes

and Tests, you have to do the following

1. Decide and explain whether the given diagram represents

a DFA or does not, i.e. is not an automatan

2. List all components of M when it represents a DFA

3. Describe L(M) as a regular expression when it does
represent a DFA



Short Problems

Consider a diagram M1

1. Yes, it represents a DFA; δ is a function on {q0, q1} × {a}
and initial state s = q0 exists

2. K = {q0, q1}, Σ = {a}, s = q0, F = {q1},

δ(q0, a) = q1, δ(q1, a) = q1

3. L(M1) = aa∗



Short Problems

Consider a diagram M2

1. Yes, it represents a DFA; δ is a function on {q0} × {a} and
initial state s = q0 exists

2. K = {q0}, Σ = {a}, s = q0, F = ∅, δ(q0, a) = q0

3. L(M2) = ∅



Short Problems

Consider a diagram M3

1. Yes, it represents a DFA; initial state s = q0 exists

2. K = {q0}, Σ = ∅, s = q0, F = ∅, δ = ∅

3. L(M3) = ∅



Short Problems

Consider a diagram M4

1. Yes, it represents a DFA; initial state s = q0 exists

2. K = {q0}, Σ = {a}, s = q0, F = {q0}, δ(q0, a) = q0

3. L(M4) = a∗

Remark e ∈ L(M4) by DFA Theorem, as s = q0 ∈ F = {q0}



Short Problems

Consider a diagram M5

1. NO! it is NOT DFA - initial state does not exist



Short Problems

Consider a diagram M6

1. NO! Initial state does exist, but δ is not a function; δ(q0, b)
is not defined and we didn’t say ”plus trap states”



Short Problems

Consider a diagram M7

1. Yes! it is DFA
Initial state exists and we can complete definition of δ by
adding a trap state as pictured below

3. L(M7) = ∅ as F = ∅



Short Problems

Consider a diagram M8

1. Yes! Initial state exists and it is a short diagram of a DFA
We make δ a function by adding a trap state q2

3. L(M8) = aa∗

We chose to add one trap state but it is possible to add as
many as one wishes
Observe that L(M8) = L(M1) and M1, M8 are defined for
different alphabets



Two Problems

P1 Let Σ = {a1, a2, . . . , a1025, . . . , a2105 }

Draw a state diagram of M such that L(M) = a1025(a1025)∗

P2
1. Draw a state diagram of transition function δ given by
the table below
2. Give an example and automaton M with with this δ

3. Describe the language of M



P1 Solution

P1 Let Σ = {a1, a2, . . . , a1025, . . . , a2105 }

Draw a state diagram of M such that L(M) = a1025(a1025)∗

Solution

PLUS a LOT of trap states!

Σ has 2105 elements; we need a trap state for each of them
except a1025



P1 Solution

Observe that we have a following

pattern for any σ ∈ Σ

L(M) = σ+ for any σ ∈ Σ

PLUS a LOT of trap states! except for the case when
Σ = {σ}



P2 Solutions

P2
1. Draw a state diagram of transition function δ given by
the table below

2. Give an example and automaton M with with this δ

Here is the example of M from our book, page 59

L(M) = {w ∈ {a, b}∗ : w does not contain three consecutive b ′s}



P2 Solution

Observe that the book example is only one of many possible
examples of automata we can define based on δ with the
following

State diagram:

Two more examples follow

Please invent some more of your own!

Be careful! This diagram is NOT an automaton!!



P2 Examples

Example 1

Here is a full diagram of M1

L(M) = (a ∪ b)∗ = Σ∗

Observe that e ∈ L(M1) by the DFA Theorem and the states

q0, q1, q2 are trap states



P2 Examples

Example 2
Here is a full diagram of M1 from Example 1

L(M) = (a ∪ b)∗ = Σ∗

Observe that we can make all, or any of the states q0, q1, q2

as final states and they will still will remain the trap states
Definition
A trap state of a DFA automaton M is any of its states that
does not influence the language L(M ) of M



P2 Examples

Example 3

Here is a full diagram of M2 with the same transition function
as M1

L(M) = ∅

Observe that F = ∅ and hence here is no computation that
would finish in a final state



More Problems

P3 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : w has abab as a substring }



Problems Solutions

P3 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : w has abab as a substring }

Solution The essential part of the diagram must produce
abab and it can be surrounded by proper elements on both
sides and can be repeated

Here is the essential part of the diagram



Problems Solutions

We complete the essential part following the fact that it can be
surrounded by proper elements on both sides and can be
repeated

Here is the diagram of M

Observe that this is a pattern diagram; you need to add
names of states only if you want to list all components

M does not have trap states



More Problems

P4 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every substring of length 4 in word w

contains at least one b }



More Problems

P4 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every substring of length 4 in word w

contains at least one b }

Solution Here is a short pattern diagram (the trap states
are not included)



More Problems

P5 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every word w contains

an even number of sub-strings ba }



More Problems

P5 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every word w contains

an even number of sub-strings ba }

Solution Here is a pattern diagram

Zero is an even number so we must have that e ∈ L(M), i.e.
we have to make the initial state also a final state



More Problems

P6 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : each a in w is

immediately preceded and immediately followed by b }



More Problems

P6 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : each a in w is

immediately preceded and immediately followed by b }

Solution: Here is a short pattern diagram - and we need
to say: plus trap states )

It is a short diagram because we omitted needed trap states
(can be more then one, but one is sufficient)
Complete the diagram as an exercise



More Problems

P7 Here is a DFA M defined by the following diagram

Describe L(M) as a regular expression



More Problems

P7 Here is a DFA M defined by the following diagram

Describe L(M) as a regular expression

Solution

L(M) = a∗ ∪ (a∗ba∗ba∗)∗

Observe that e ∈ L(M) by the DFA Theorem



Short Problems

SP1 Given an automaton M1

M1 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = ∅)

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M1)



SP1 Solution

SP1

1. Here is the state diagram

2. q1 is a trap state - M1 never gets there

3. L(M1) = ∅



Short Problems

SP2 Given an automaton M2

M2 = ( K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q1

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M2)



SP2 Solution

SP2

1. Here is the state diagram

2. q1 is a trap state - it does not influence the language of
M1

3. L(M2) = ∅



Short Problems

SP3 Given an automaton M3

M3 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, a) = q1, δ(q1, b) = q0

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M3)



SP3 Solution

SP3

1. Here is the state diagram

2. There are no trap states

3. L(M3) = a∗b ∪ a∗ba∗ ∪ (a∗ba∗ba∗b)∗

L(M3) = a∗ba∗ ∪ (a∗ba∗ba∗b)∗



Short Problems

SP4 Given an automaton M4 = ( K , Σ, δ, s, F) for
K = {q0, q1, q2, q3}, Σ = {a, b}, s = q0, F = {q0, q1, q2}

and δ defined by the table below

1. Draw its state diagram
2. Give a property describing L(M4)



SP4 Solution

SP4

1. Here is the state diagram

Observe that state q3 is a trap state and the short diagram
is as follows



SP4 Solution

SP4
1. Here is the short diagram

2. The language of M4 is

L(M4) = {w ∈ Σ∗ : neither aa nor bb is a substring of w }



Short Problems

SP5 Given an automaton M5 = ( K , Σ, δ, s, F) for
K = {q0, q1, q2, q3}, Σ = {a, b}, s = q0, F = {q1}

and δ defined by the table below

1. Draw its state diagram
2. Give a property describing L(M5)



SP5 Solution

SP5

1. Here is the state diagram

2. L(M5) = {w ∈ Σ∗ : w has an odd number of a ’s

and an even number of of b ’s }


