# cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

# LECTURE 4a

### **REVIEW FOR CHAPTER 1**

- 1. Some Short Questions
- 2. Some Homework Problems

# **CHAPTER 1**

# **SHORT QUESTIONS**

Here are solutions to some short YES/NO Questions for material covered in CHAPTER 1

Solving Quizzes and Tests you have to write a short solutions and circle the answer

You will get **0 pts** if you only circle your answer without providing a **solution**, even if it is correct answer

Here are some questions

Q1 
$$\{\emptyset, \{\emptyset\}\} \cap \{\emptyset\} \neq \emptyset$$
 yes

We have that

$$\emptyset \in \{\emptyset\}$$
 and  $\emptyset \in \{\emptyset, \{\emptyset\}\}$ 

This proves that

$$\emptyset \in \{\emptyset\} \cap \{\emptyset, \{\emptyset\}\}$$

Hence 
$$\{\emptyset, \{\emptyset\}\} \cap \{\emptyset\} \neq \emptyset$$

**Q2** Some relations  $R \subseteq A \times B$  are functions that map the set A into the set B

# yes

Functions are special type of relations so some binary relations are functions ( but not all relations are functions)

Q3 
$$2^{\emptyset} = \emptyset$$

no

$$\emptyset \subseteq \emptyset$$
 so  $\emptyset \in 2^{\emptyset}$ 

Q4 For any binary relation R on a set A, the inverse relation  $R^{-1}$  exists yes

By definition of the inverse relation is

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

and such set always exists

**Q5** For any function  $f: A \longrightarrow B$ , the inverse function  $f^{-1}: B \longrightarrow A$  exists

no

Inverse function to a function f exists if and only if f is 1-1 and onto

Q6 A set  $A = \{x \in \mathbb{N} : x^2 + 5 < 0\}$  is countable yes

$$A = \{x \in \mathbb{N}: \ x^2 + 5 < 0\} = \emptyset$$

and any finite set is countable

Q7 The set  $A = \{n \in \mathbb{N} : n^2 + 5 > 0\}$  is countable yes

The definition says:

A set *A* is countable if and only if is finite or is countably infinite

The set

$$A = \{n \in N : n^2 + 5 > 0\} = N$$

and N is countably infinite, hence A is countable

**Q8** The set  $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n^2\}$  is infinitely countable

# yes

First observe that

$$A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n^2\} = C \times B$$

where the set B is

$$B = \{ n \in \mathbb{N} : 1 \le n \le n^2 \}$$

and the set C is

$$C = \{ \{n\} \in 2^N : 1 \le n \le n^2 \}$$



The condition  $1 \le n \le n^2$  holds for all  $n \in N - \{0\}$  hence the set

$$B = \{n \in N: \ 1 \le n \le n^2\}$$

is infinitely countable and so is the set

$$C = \{ \{n\} \in 2^N : 1 \le n \le n^2 \}$$

as the function  $f(n) = \{n\}$  is 1 - 1 and maps B onto C. The set

$$A = C \times B$$

is **infinitely countable** as it is the cartesian product of two infinitely countable sets



Q9 Let 
$$A = \{n \in \mathbb{N} : n^2 + 1 \le 15\}$$
  
It is possible to define 8 alphabets  $\Sigma \subseteq A$   
yes

$$A = \{n \in \mathbb{N} : n^2 + 1 \le 15\} = \{0, 1, 2, 3\}$$

so the set A has 4 elements and it has  $2^4 = 16$  of all possible subsets and they are all finite, i.e we can define up to up to 16 alphabets  $\Sigma \subseteq A$ So have can define for sure 8 < 16 alphabets

**Q10** Let 
$$\Sigma = \{n \in \mathbb{N} : n^2 + 1 = 10\}$$

There are **uncountably** many finite languages over  $\Sigma$  no

Observe that

$$\Sigma = \{ n \in \mathbb{N} : n^2 + 1 = 10 \} = \{ 3 \}$$

and hence  $|\Sigma^{\star}| = \aleph_0$ 

A finite language over  $\Sigma$  is by definition a

finite subset of  $\Sigma^*$ 

We have a Theorem:

The set of all finite subsets of any countably infinite set is countably infinite



**Q11** For any languages  $L_1$ ,  $L_2$ , L over  $\Sigma \neq \emptyset$  we have that

$$(L_1 \cup L_2) \cap L = (L_1 \cap L) \cup (L2 \cap L)$$

**yes** Languages are sets hence all laws of algebra of sets hold for them and this is one of the Distributivity laws

**Q12** 
$$L^* = \{w_1 w_2 \dots w_n : w_i \in L, i = 1, 2, ...n, n \ge 1\}$$

no

This is the definition of  $L^+$ ; we must put  $n \ge 0$  for  $L^*$ 



# Q13 A regular language is a regular expression no

A regular language is represented by a regular expression

More precisely, a regular language is **represented** by the function  $\mathcal{L}$ : Regular Expressions  $\longrightarrow$  Regular Languages such that the following holds

if  $\alpha$  is any regular expression, then  $\mathcal{L}(\alpha)$  is the language represented by  $\alpha$ 

**Q14** Let 
$$\alpha = a(a \cup b)^*$$

$$\mathcal{L}(\alpha) = \{ \mathbf{w} \in \{ \mathbf{a}, \ \mathbf{b} \}^* : \mathbf{w} \text{ ends with } \mathbf{a} \}$$

no

We evaluate

$$\mathcal{L}(a(a \cup b)^*) = \{a\}(\{a\} \cup \{b\})^* = \{a\}\Sigma^*$$

and hence the property defining  $\mathcal{L}(\alpha)$  is

$$\mathcal{L}(\alpha) = \{ \mathbf{w} \in \{ \mathbf{a}, \ \mathbf{b} \}^* : \mathbf{w} \text{ starts with } \mathbf{a} \}$$

Q15 For any language L over an alphabet  $\Sigma$ ,

$$L^+ = L \cup L^*$$

no

Take L be any language such that  $e \notin L$ 

We have that

$$e \notin L^+$$
 but  $e \in L \cup L^*$ 

This proves that

$$L^+ \neq L \cup L^*$$

# **CHAPTER 1**

Some Homework Problems

#### **Problem 1**

Consider the following languages over  $\Sigma = \{a, b\}$ 

$$L_1 = \{ w \in \Sigma^* : \exists u \in \Sigma\Sigma(w = uu^R u) \}$$
$$L_2 = \{ w \in \Sigma^* : ww = www \}$$

**Part 1:** Prove that  $L_1$  is a finite set

Give example of 3 words  $w \in L_1$ 

#### Solution

We evaluate first the set

$$\Sigma\Sigma = \{a,b\}\{a,b\} = \{aa,bb,ab,ba\}$$

 $\Sigma\Sigma$  is a **finite set**, hence the set  $B = \{uyu : u, y \in \Sigma\Sigma\}$ 

is also a **finite set** and by definition  $L_1 \subseteq B$ 

This proves that  $L_1$  must be a **finite set** 



We evaluated that  $\Sigma\Sigma = \{a,b\}\{a,b\} = \{aa,bb,ab,ba\}$ We defined  $L_1 = \{w \in \Sigma^*: \exists u \in \Sigma\Sigma(w = uu^Ru)\}$ By evaluation we have that

 $L_1 = \{aaaaaa, abbaab, baabba, bbbbbb\}$ 

**Part 2:** Give examples of 2 words over  $\Sigma$  such that  $w \notin L_1$ **Solution**  $a \notin L_1$ ,  $bba \notin L_1$ There are countably infinitely many words that **are not** in  $L_1$ 

# Part 3 Consider now the following language

$$L_2 = \{w \in \{a,b\}^* : ww = www\}$$

Show that  $L_2 \neq \emptyset$ 

**Solution**  $e \in L_2$ , as ee = eee

In fact, *e* is the only word with this property, hence

$$L_2 = \{e\}$$

**Part 4** Show that the set  $(\Sigma^* - L_2)$  is infinite

**Solution**  $\Sigma^*$  is countably infinite,  $L_2$  is finite, so (basic theorem)  $(\Sigma^* - L_2)$  is countably infinite

Any  $w \in \Sigma^*$ , such that  $w \neq e$  is in  $(\Sigma^* - L_2)$ 



#### **Problem 2**

Given expressions (written in a short hand notation)

$$\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*$$
$$\alpha_2 = (a \cup b)^* b(a \cup b)^*$$

**Part 1** Re-write  $\alpha_1$  as a **simpler** expression representing the same language

List properties you used in your solution

Describe the language  $L = \mathcal{L}(\alpha_1)$ 

#### **Solution** We first evaluate

$$\mathcal{L}(\alpha_1) = \mathcal{L}(\emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*)$$
  
=  $e \cup \{a\}^* \cup \{b\}^* \cup \{a\} \cup \{b\} \cup (\{a\} \cup \{b\})^* = \Sigma^*$ 

This is true because of the properties:

$$(\{a\} \cup \{b\})^* = \{a, b\}^* = \Sigma^*$$
 and

$$\{a\} \subseteq \{a\}^*, \ \{b\} \subseteq \{b\}^*, \ \{a\}^* \subseteq \Sigma^*, \ \{b\}^* \subseteq \Sigma^*$$

and we know that for any sets A, B, if  $A \subseteq B$ , then  $A \cup B = B$ 

$$\mathcal{L}(\alpha_1) = \Sigma^* = (\{a\} \cup \{b\})^* = \mathcal{L}((a \cup b)^*)$$

We hence simplify  $\alpha_1$  as follows

$$\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^* = (a \cup b)^*$$

#### Part 2 Given

$$\alpha_2 = (a \cup b)^*b(a \cup b)^*$$

Re-write  $\alpha_2$  as a simpler expression representing the same language

**Describe** the language  $L = \mathcal{L}(\alpha_2)$ 

**Solution**  $\alpha_2$  can not be simplified, but we can use property  $(\{a\} \cup \{b\})^* = \Sigma^*$  to describe informally the language determined by  $\alpha_2$  as

$$L = \mathcal{L}(\alpha_2) = \Sigma^* b \Sigma^*$$

Remember that informal description  $\Sigma^*b\Sigma^*$  is not a regular expression - but just an useful notation



#### Problem 3

Let  $\Sigma = \{a, b\}$  and a language  $L \subseteq \Sigma^*$  be defined as follows:

$$L = \{ w \in \Sigma^* : w \text{ contains no more then two } a$$
's $\}$ 

Write a regular expression  $\alpha$ , such that  $\mathcal{L}(\alpha) = L$ . Use shorthand notation. **Explain** shortly your answer.

#### Solution

$$\alpha = b^* \cup b^*ab^* \cup b^*ab^*ab^*$$

# **Explanation**

```
b* contains 0 of a's (case n=0)
b*ab* contains 1 occurrence of a (case n=1)
b*ab*ab* contains 2 occurrence of a (case n=2)
```



#### **Problem 4**

Let  $\Sigma = \{a, b\}$ 

The language  $L \subseteq \Sigma^*$  is defined as follows:

 $L = \{ w \in \Sigma^* : \text{ the number of } b \text{ 's in } w \text{ is divisible by 4 } \}$ 

**Write** a regular expression  $\alpha$ , such that  $\mathcal{L}(\alpha) = \mathcal{L}$ 

You can use **shorthand notation**. Explain shortly your answer

#### Solution

$$\alpha = a^*(a^*ba^*ba^*ba^*)^*$$

**Observe** that the regular expression  $a^*ba^*ba^*ba^*ba^*$  describes a string  $w \in \Sigma^*$  with **exactly four** b 's

The regular expression

represents multiples of  $w \in \Sigma^*$  with **exactly four** b 's and hence words in which a number of b 's is **divisible by** 4

**Observe** that 0 is divisible by 4, so we need to add the case of 0 number of b's, i.e. we need to include words e, a, aa, aaa, ....

We do so by concatenating (a\*ba\*ba\*ba\*ba\*ba\*)\* with a\* and get

$$L = a^*(a^*ba^*ba^*ba^*)^*$$



#### Problem 5

**1.** Let 
$$A = \{(\{n, n+1\}, n) \in 2^N \times N : 1 \le n \le 3\}$$
  
List all elements of  $A$ 

#### Solution

1. By simple evaluation we get

$$A = \{(\{n, n+1\}, n) \in 2^{N} \times N : n = 1, 2, 3\}$$
$$= \{(\{1, 2\}, 1), (\{2, 3\}, 2), (\{3, 4\}, 3)\}$$

2. Let now 
$$A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n+1\}$$
  
Prove that A is infinitely countable  
Solution

Observe that the set A can be re-written as follows

$$A = \{(\{n\}, n) \in 2^{N} \times N : 1 \le n \le n+1\}$$
$$= \{(\{n\}, n) \in 2^{N} \times N : 1 \le n\}$$

because  $n \le n+1$  for all  $n \in N$ 

The set  $B = \{\{n\} : n \in N\}$  has the same cardinality as N by the function  $f(n) = \{n\}$ 

 $A = B \times N$  is hence a Cartesian product of two infinitely countable sets, and as we have proved, an infinitely countable set



#### Problem 6

Let L be a language defines as follows

$$L = \{w \in \{a, b\}^* : P(w)\}$$

for the property P(w) defined as follows

P(w): between any two a's in  $w \in \{a, b\}^*$  there is an **even** number of **consecutive** b's

1. **Describe** a regular expression r such that  $\mathcal{L}(r) = L$ Remark that 0 is an even number, hence  $\mathbf{a}^* \in L$  and

$$r = b^* \cup b^* a^* b^* \cup b^* (a(bb)^* a)^* b^* = b^* a^* b^* \cup b^* (a(bb)^* a)^* b^*$$



#### Problem 7

Let  $\Sigma$  be any alphabet,  $L_1,L_2$  two languages over  $\Sigma$  such that  $e\in L_1$  and  $e\in L_2$ 

Show that

$$(L_1\Sigma^*L_2)^* = \Sigma^*$$

#### Solution

By definition,  $L_1 \subseteq \Sigma^*$ ,  $L_2 \subseteq \Sigma^*$  and  $\Sigma^* \subseteq \Sigma^*$ Hence

$$(L_1\Sigma^*L_2)\subseteq\Sigma^*$$

Now we use the following property:

# **Property**

For any languages  $L_1.L_2$ , if  $L_1\subseteq L_2$ , then  $L_1^*\subseteq L_2^*$  and obtain that  $(L_1\Sigma^*L_2)^*\subseteq \Sigma^{**}=\Sigma^*$ , i.e. we proved that

$$(L_1\Sigma^*L_2)^*\subseteq\Sigma^*$$

We have to show now that also

$$\Sigma^* \subseteq (L_1\Sigma^*L_2)^*$$

Let  $w \in \Sigma^*$ , we have that also  $w \in (L_1 \Sigma^* L_2)^*$  because w = ewe and  $e \in L_1$  and  $e \in L_2$ . We have hence **proved** that

$$(L_1\Sigma^{\star}L_2)^{\star}=\Sigma^{\star}$$



#### **Problem 8**

Let  $\mathcal{L}$  be a function that associates with any regular expression  $\alpha$  the regular language  $L = \mathcal{L}(\alpha)$ 

**1.** Evaluate  $L = \mathcal{L}(\alpha)$  for  $\alpha = (a \cup b)^*a$ 

#### Solution

$$L = \mathcal{L}((a \cup b)^*a) = \mathcal{L}((a \cup b)^*)\mathcal{L}(a) = (\mathcal{L}(a \cup b))^*\{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^*\{a\} = (\{a\} \cup \{b\})^*\{a\} = \{a, b\}^*\{a\}$$

**2** Describe a property that defines the language  $L = \mathcal{L}((a \cup b)^*a)$ 

#### Solution

$$L = \{a, b\}^* \{a\} = \Sigma^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a \}$$