
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska

LECTURE 4

CHAPTER 1

SETS, RELATIONS, and LANGUAGES

7. Alphabets and Languages

8. Finite Representation of Languages

CHAPTER 1

PART 7: Alphabets and Languages

Introduction

Data are encoded in the computers’ memory as

strings of bits or other symbols appropriate for manipulation

The mathematical study of the Theory of Computation

begins with understanding of mathematics of manipulation

of strings of symbols

We first introduce two basic notions: Alphabet and

Language

Alphabet

Definition

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

This is why we also say:

Alphabet is any finite set of symbols

Alphabet

Alphabet Notation

We use a symbol Σ to denote the alphabet

Remember

Σ can be ∅ as empty set is a finite set

When we want to study non-empty alphabets we have to

say so, i.e to write:
Σ , ∅

Alphabet Examples

E1 Σ = {‡, ∅, ∂,
∮
,
⊗

, ~a, ∇}

E2 Σ = {a, b , c}

E3 Σ = {n ∈ N : n ≤ 105}

E4 Σ = {0, 1} is called a binary alphabet

Alphabet Examples

For simplicity and consistence we will use only as

symbols of the alphabet letters (with indices if necessary) or

other common characters when needed and specified

We also write σ ∈ Σ for a general form of an element in Σ

Σ is a finite set and we will write

Σ = {a1, a2, . . . , an} for n ≥ 0

Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function

f : {1, 2, . . . , n} −→ A for n ∈ N

We call f(n) = an the n-th element of the sequence f

We call n the length of the sequence

a1, a2, . . . , an

Case n=0

In this case the function f is empty and we call it an empty
sequence and denote by e

Words over Σ

Let Σ be an alphabet

We call finite sequences of the alphabet Σ words

or strings over Σ

We denote by e the empty word over Σ

Some books use symbol λ for the empty word

Words over Σ

E5 Let Σ = {a, b}
We will write some words (strings) over Σ in a shorthand

notaiton as for example

aaa, ab , bbb

instead using the formal definition:

f : {1, 2, 3} −→ Σ

such that f(1) = a, f(2) = a, f(3) = a for the word aaa

or g : {1, 2} −→ Σ such that g(1) = b , g(2) = b

for the word bb .. etc..

Words in Σ∗

Let Σ be an alphabet. We denote by

Σ∗

the set of all finite sequences over Σ

Elements of Σ∗ are called words over Σ

We write w ∈ Σ∗ to express that w is a word over Σ

Symbols for words are

w, z, v , x, y, z, α, β, γ ∈ Σ∗

x1, x2, . . . ∈ Σ∗ y1, y2, . . . ∈ Σ∗

Words in Σ∗

Observe that the set of all finite sequences include

the empty sequence i.e. e ∈ Σ∗ and we hence

have the following

Fact

For any alphabet Σ ,
Σ∗ , ∅

Chapter 1

Some Short Questions and Answers

Short Questions

Q1 Let Σ = {a, b}
How many are there all possible words of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences;

Hence words of a length 5 are functions

f : {1, 2, . . . , 5} −→ {a, b}

So we have by the Counting Functions Theorem that

there are 25 words of a length 5 over Σ = {a, b}

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A , B, there are

|B||A |

functions that map A into B

The proof is in Lecture 2, Part 5

Short Questions

Q2

Let Σ = {a1, . . . , ak} where k ≥ 1

How many are there possible words of length ≤ n for
n ≥ 0 in Σ∗?

A2

By the Counting Functions Theorem there are

k 0 + k 1 + · · ·+ k n

words of length ≤ n over Σ because for each m

there are k m words of length m over Σ = {a1, . . . , ak}
and m = 0, 1 . . . n

Short Questions

Q3 Given an alphabet Σ , ∅
How many are there words in the set Σ∗?

A3

There are infinitely countably many words in Σ∗ by the

Theorem 5 (Lecture 2) that says: ” for any non empty, finite

set A , |A∗| = ℵ0 ”

We hence proved the following

Theorem

For any alphabet Σ , ∅, the set Σ∗ of all words over Σ

is countably infinite

Languages over Σ

Language Definition

Given an alphabet Σ, any set L such that

L ⊆ Σ∗

is called a language over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are uncountably many

languages over Σ

More precisely, there are exactly C = |R| of languages

over any non - empty alphabet Σ

Languages over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Proof

By definition, a set is countable if and only if is finite or

countably infinite

1. Let Σ = ∅, hence Σ∗ = {e} and we have two languages

∅, {e} over Σ, both finite, so countable

2. Let Σ , ∅, then Σ∗ is countably infinite, so obviously any
L ⊆ Σ∗ is finite or countably infinite, hence countable

Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are exactly C = |R| of
languages

over any non - empty alphabet Σ

Proof

We proved that |Σ∗| = ℵ0

By definition L ⊆ Σ∗, so there is as many languages over Σ

as all subsets of a set of cardinality ℵ0— that is

as many as 2ℵ0 = C

Languages over Σ

Q4 Let Σ = {a}
There is ℵ0 languages over Σ

NO

We just proved that that there is uncountably many,

more precisely, exactly C languages over Σ , ∅ and

we know that
ℵ0 < C

Some Basic Definitions

Some Basic Definitions

Definition

Given an alphabet Σ and a word w ∈ Σ∗

We say that w has a length n = l(w) = |w| when

w : {1, 2, . . . , n} −→ Σ

We re-write w as

w : {1, 2, . . . , |w|} −→ Σ

Some Basic Definitions

We define now a position of σ ∈ Σ in a word w ∈ Σ∗

as follows

Definition

Given σ ∈ Σ and a word w ∈ Σ∗

σ ∈ Σ occurs in the j-th position in w ∈ Σ∗

if and only if w(j) = σ for 1 ≤ j ≤ |w|

Some Examples

E6 Consider a word w written in a shorthand as

w = anita

By formal definition we have

w(1) = a, w(2) = n, w(3) = i, w(4) = t , w(5) = a

and a occurs in the 1st and 5th position

Some Examples

E7 Let Σ = {0, 1} and w = 01101101 (shorthand)

Formally w : {1, 2, . . . , 8} −→ {0, 1} is such that

w(1) = 0, w(2) = 1, w(3) = 1, w(4) = 0, w(5) = 1,

w(6) = 1, w(7) = 0, w(8) = 1

1 occurs in the positions 2, 3, 5, 6 and 8

0 occurs in the positions 1, 4, 7

Informal Concatenation

Concatenation (Informal Definition)

Given an alphabet Σ and any words x, y ∈ Σ∗

We define informally a concatenation ◦ of words x, y as

a word w obtained from x, y by writing the word x followed

by the word y

Informal Concatenation

We write the concatenation of words x, y as

w = x ◦ y

We use the symbol ◦ of concatenation when

it is needed formally, otherwise we will write simply

w = xy

Formal Concatenation

Definition

Given an alphabet Σ and any words x, y ∈ Σ∗

We define:
w = x ◦ y

if and only if

1. |w| = |x|+ |y|
2 . w(j) = x(j) for j = 1, 2, . . . , |x|
2 . w(|x|+ j) = y(j) for j = 1, 2, . . . , |y|

Formal Concatenation

Properties

Directly from definition we have that

w ◦ e = e ◦ w = w

Concatenation of words is associative

(x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

Formal Concatenation

Remark

We need to define a concatenation of two words only and

then we define

x1 ◦ x2 ◦ · · · ◦ xn = (x1 ◦ x2 ◦ · · · ◦ xn−1) ◦ xn

and prove by Mathematical Induction that

w = x1 ◦ x2 ◦ · · · ◦ xn

is well defined for all n ≥ 2

Substring

Definition

A word v ∈ Σ∗ is a substring (sub-word) of w iff there are
x, y ∈ Σ∗ such that

w = xvy

Remark: the words x, y ∈ Σ∗, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string (any word w)

as we have that ew = we = w

Definition Let w = xy

x is called a prefix and y is called a suffix of w

Power w i

Definition

We define a power w i of w recursively as follows

w0 = e

w i+1 = w i ◦ w

This type of definition is called definition by induction

E8

w0 = e, w1 = w0 ◦ w = e ◦ w = w, w2 = w1 ◦ w = w ◦ w

E9

anita2 = anita1 ◦ anita = e ◦ anita ◦ anita = anita ◦ anita

Reversal wR

Definition

Reversal wR of w is defined by induction over length |w| of
w as follows

1. If |w| = 0, then wR = w = e

2. If |w| = n + 1 > 0, then w = ua for some a ∈ Σ, and
u ∈ Σ∗ and we define

wR = auR for |u| < n + 1

Short Definition of wR

1. eR = e

2. (ua)R = auR

Reversal Proof

We prove now as an example of Inductive proof the following

Fact

For any w, x ∈ Σ∗

(wx)R = xRwR

Proof by Mathematical Induction over the length |x| of x with
|w| = constant

Base case n=0

|x| = 0, i.e. x=e and by definition

(we)R = (w)R = ewR = eRwR

Reversal Proof

Inductive Assumption

(wx)R = xRwR for all |x| ≤ n

Let now |x| = n + 1, so x = ua for certain a ∈ Σ, u ∈ Σ∗

and |u| = n

We evaluate

(wx)R =(w(ua))R = ((wu)a)R

=def a(wu)R =ind a(uRwR) = (auR)wR =def (ua)RwR =xRwR

Languages over Σ

Definition

Given an alphabet Σ, any set L such that L ⊆ Σ∗

is called a language over Σ

Observe that ∅, Σ, Σ∗ are all languages over Σ

We have proved

Theorem

Any language L over Σ, is finite or infinitely countable

Languages over Σ

Languages are sets so we can define them in

ways we did for sets, by listing elements (for small finite sets)

or by giving a property P(w) defining L , i.e. by setting

L = {w ∈ Σ∗ : P(w)}

E1

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s }

E2

L2 = {w ∈ {a, b}∗ : w has ab as a sub-string }

Languages Examples

E3
L3 = {w ∈ {0, 1}∗ : |w| ≤ 2}

E4
L4 = {e, 0, 1, 00, 01, 11, 10}

Observe that L3 = L4

Languages Examples

Languages are sets so we can define set operations of

union, intersection, generalized union, generalized

intersection, complement, Cartesian product, ... etc ... of

languages as we did for any sets

For example, given L , L1, L2 ⊆ Σ∗, we consider

L1 ∪ L2, L1 ∩ L2, L1 − L2,

−L = Σ∗ − L , L1 × L2, , . . . etc

and we have that all properties of algebra of sets hold for any

languages over a given alphabet Σ

Special Operations on Languages

We define now a special operation on languages, different
from any of the set operation

Concatenation Definition

Given L1, L2 ⊆ Σ∗, a language

L1 ◦ L2 = {w ∈ Σ∗ : w = xy for some x ∈ L1, y ∈ L2}

is called a concatenation of the languages L1 and L2

Concatenation of Languages

The concatenation L1 ◦ L2 domain issue

We can have that the languages L1, L2 are defined over

different domains, i.e they have two alphabets Σ1 , Σ2 for

L1 ⊆ Σ1
∗ and L2 ⊆ Σ2

∗

In this case we always take

Σ = Σ1 ∪ Σ2 and get L1, L2 ⊆ Σ∗

Concatenation Examples

E5

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w| ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w| ≤ 2}

Describe the concatenation L1 ◦ L2 of L1 and L2

Domain Σ of L1 ◦ L2

We have that Σ1 = {a, b} and Σ2 = {0, 1}
so we take Σ = Σ1 ∪ Σ2 = {a, b , 0, 1} and

L1 ◦ L2 ⊆ Σ

Concatenation Examples

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w| ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w| ≤ 2}

We write now a general formula for L1 ◦ L2 as follows

L1 ◦ L2 = {w ∈ Σ∗ : w = xy }

where

x ∈ {a, b}∗, y ∈ {0, 1}∗ and |x| ≤ 1, |y| ≤ 2

Concatenation Examples

E5 revisited

Describe the concatenation of L1 = {w ∈ {a, b}∗ : |w| ≤ 1}
and L2 = {w ∈ {0, 1}∗ : |w| ≤ 2}
As both languages are finite, we list their elements and get

L1 = {e, a, b}, L2 = {e, 0, 1, 01, 00, 11, 10}
We describe their concatenation as

L1 ◦ L2 = {ey : y ∈ L2} ∪ {ay : y ∈ L2} ∪ {by : y ∈ L2}

Here is another general formula for L1 ◦ L2

L1 ◦ L2 = e ◦ L2 ∪ ({a} ◦ L2) ∪ ({b} ◦ L2)

Concatenation Examples

E6

Describe concatenations L1 ◦ L2 and L2 ◦ L1 of

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s}

and
L2 = {w ∈ {0, 1}∗ : w = 0xx, x ∈ Σ∗}

Here the are

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}

Concatenation Examples

We have that

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}
L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}
Observe that

1000 ∈ L1 ◦ L2 and 1000 < L2 ◦ L1

This proves that
L1 ◦ L2 , L2 ◦ L1

We hence proved the following

Fact

Concatenation of languages is not commutative

Concatenation Examples

E8

Let L1, L2 be languages defined below for Σ = {0, 1}
L1 = {w ∈ Σ∗ : w = x1, x ∈ Σ∗}
L2 = {w ∈ Σ∗ : w = 0x, x ∈ Σ∗}
Describe the language L2 ◦ L1

Here it is

L2 ◦ L1 = {w ∈ Σ∗ : w = 0xy1, x, y ∈ Σ∗}

Observe that L2 ◦ L1 can be also defined by a property as
follows

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0 and ends with 1}

Distributivity of Concatenation

Theorem

Concatenation is distributive over union of languages

More precisely, given languages L , L1, L2, . . . , Ln, the
following holds for
any n ≥ 2

(L1 ∪ L2 ∪ · · · ∪ Ln)◦L = (L1◦L) ∪ · · · ∪ (Ln◦L)

L◦(L1 ∪ L2 ∪ · · · ∪ Ln) = (L◦L1) ∪ · · · ∪ (L◦Ln)

Proof by Mathematical Induction over n ∈ N, n ≥ 2

Distributivity of Concatenation Proof

We prove the base case for the first equation and leave the
Inductive argument and a similar proof of the second equation
as an exercise

Base Case n = 2

We have to prove that

(L1 ∪ L2)◦L = (L1◦L) ∪ (L2◦L)

w ∈ (L1 ∪ L2)◦L iff (by definition of ◦)

(w ∈ L1 or w ∈ L2) and w ∈ L iff (by distributivity of and
over or)

(w ∈ L1and w ∈ L) or (w ∈ L2 and w ∈ L) iff (by definition
of ◦)

(w ∈ L1◦L)or (w ∈ L2◦L) iff (by definition of ∪)

w ∈ (L1◦L) ∪ (L2◦L)

Kleene Star - L∗

Kleene Star L∗ of a language L is yet another operation
specific to languages

It is named after Stephen Cole Kleene (1909 -1994), an
American mathematician and world famous logician who also
helped lay the foundations for theoretical computer science

We define L∗ as the set of all strings obtained by
concatenating zero or more strings from L

Remember that concatenation of zero strings is e , and
concatenation of one string is the string itself

Kleene Star - L∗

We define L∗ formally as

L∗ = {w1w2 . . .wk : for some k ≥ 0 and w1, . . . ,wk ∈ L}

We also write as

L∗ = {w1w2 . . .wk : k ≥ 0, wi ∈ L , i = 1, 2, . . . , k}

or in a form of Generalized Union

L∗ =
⋃

k≥0
{w1w2 . . .wk : w1, . . . ,wk ∈ L}

Remark we write xyz for x ◦ y ◦ z. We use the concatenation

symbol ◦ when we want to stress that we talk about some

properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic properties

P1 e ∈ L∗, for all L

Follows directly from the definition as we have case k = 0

P2 L∗ , ∅, for all L

Follows directly from P1, as e ∈ L∗

P3 ∅∗ , ∅
Because L∗ = ∅∗ = {e} , ∅

Kleene Star Properties

Some more Kleene Star basic properties

P4 L∗ = Σ∗ for some L

Take L = Σ

P6 L∗ , Σ∗ for some L

Take L = {00, 11} over Σ = {0, 1}
We have that

01 < L∗ and 01 ∈ Σ∗

Example

Observation

The property P4 provides a quite trivial example of a
language L over an alphabet Σ such that L∗ = Σ∗, namely
just L = Σ

A natural question arises: is there any language L , Σ such
that nevertheless L∗ = Σ∗?

Example

Example

Take Σ = {0, 1} and take

L = {w ∈ Σ∗ : w has an unequal number of 0 and 1}

Some words in and out of L are

100 ∈ L , 00111 ∈ L 100011 < L

We now prove that

L∗ = {0, 1}∗ = Σ∗

Example Proof

Given

L = {w ∈ {0, 1}∗ : w has an unequal number of 0 and 1}
We now prove that

L∗ = {0, 1}∗ = Σ∗

Proof

By definition we have that L ⊆ {0, 1}∗ and
{0, 1}∗∗ = {0, 1}∗

By the the following property of languages:

P: If L1 ⊆ L2, then L1
? ⊆ L2

?

and get that

L∗ ⊆ {0, 1}∗∗ = {0, 1}∗ i.e. L∗ ⊆ Σ∗

Example Proof

Now we have to show that Σ∗ ⊆ L∗, i.e.

{0, 1}∗ ⊆ {w ∈ 0, 1∗ : w has an unequal number of 0 and 1}

Observe that

0 ∈ L because 0 regarded as a string over Σ has an
unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of
appearances of 0 is one

1 ∈ L for the same reason a 0 ∈ L

So we proved that {0, 1} ⊆ L

We now use the property P and get

{0, 1}∗ ⊆ L∗ i.e Σ∗ ⊆ L∗

what ends the proof that Σ∗ = L∗

L∗ and L+

We define

L+ = {w1w2 . . .wk : for some k ≥ 1 and some w1, . . . ,wk ∈ L}

We write it also as follows

L+ = {w1w2 . . .wk : k ≥ 1 wi ∈ L , i = 1, 2, . . . , k}

Properties

P1 : L+ = L ◦ L∗ P2 : e ∈ L+ iff e ∈ L

L∗ and L+

We know that
e ∈ L∗ for all L

Show that

For some language L we have that e ∈ L+ and

for some language L we can have that e < L+

E1

Obviously, for any L such that e ∈ L we have that e ∈ L+

E2

If L is such that e < L we have that e < L+ as L+ does not
have a case k=0

CHAPTER 1
PART 8: Finite Representation of Languages

Finite Representation of Languages
Introduction

We can represent a finite language by finite means for
example listing all its elements

Languages are often infinite and so a natural question arises
if a finite representation is possible and when it is possible
when a language is infinite

The representation of languages by finite specifications is a
central issue of the theory of computation

Of course we have to define first formally what do we mean by
representation by finite specifications , or more precisely by a
finite representation

Idea of Finite Representation

We start with an example: let

L = {a}∗ ∪ ({b} ◦ {a}∗) = {a}∗ ∪ ({b}{a}∗)

Observe that by definition of Kleene’s star

{a}∗ = {e, a, aa, aaa . . . }

and L is an infinite set

L = {e, a, aa, aaa . . . } ∪ {b}{e, a, aa, aaa . . . }

L = {e, a, aa, aaa . . . } ∪ {b , ba, baa, baaa . . . }

L = {e, a, b , aa, ba, aaa baa, . . . }

Idea of Finite Representation

The expression {a}∗ ∪ ({b}{a}∗) is built out of a

finite number of symbols:

{, }, (,), ∗, ∪

and describe an infinite set

L = {e, a, b , aa, ba, aaa baa, . . . }

We write it in a simplified form - we skip the set symbols

{, } as we know that languages are sets

and we have
a∗ ∪ (ba∗)

Idea of Finite Representation

We will call such expressions as

a∗ ∪ (ba∗)

a finite representation of a language L

The idea of the finite representation is to use symbols

(,), ∗ , ∪, ∅, and symbols σ ∈ Σ

to write expressions that describe the language L

Example of a Finite Representation

Let L be a language defined as follows

L = {w ∈ {0, 1}∗ : w has two or three occurrences of 1

the first and the second of which are not consecutive }

The language L can be expressed as

L = {0}∗{1}{0}∗{0} ◦ {1}{0}∗({1}{0}∗ ∪ ∅∗)

We will define and write the finite representation of L as

L = 0∗10∗010∗(10∗ ∪ ∅∗)

We call expression above (and others alike) a regular
expression

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
Σ , ∅?

Observation

O1. Different languages must have different representations

O2. Finite representations are finite strings over a finite
set, so we have that

there are ℵ0 possible finite representations

Problem with Finite Representation

O3. There are uncountably many, precisely exactly

C = |R|) of possible languages over any alphabet Σ , ∅
Proof

For any Σ , ∅ we have proved that

|Σ∗| = ℵ0

By definition of language

L ⊆ Σ∗

so there are as many languages as subsets of Σ∗ that is as
many as

|2Σ∗ | = 2ℵ0 = C

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
Σ , ∅?
Answer

No, we can’t

By O2 and O3 there are countably many (exactly ℵ0)
possible finite representations and there are uncountably
many (exactly C) possible languages over any Σ , ∅
This proves that

NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED

Problem with Finite Representation

Moreover

There are uncountably many and exactly as many as Real
numbers, i.e. C languages that can not be finitely
represented

We can finitely represent only a small, countable portion of
languages

We define and study here only two classes of languages:

REGULAR and CONTEXT FREE languages

Regular Expressions Definition

Definition

We define a R of regular expressions over an alphabet Σ
as follows

R ⊆ (Σ ∪ {(,), ∅, ∪, ∗})∗ and R is the smallest set such
that

1. ∅ ∈ R and Σ ⊆ R, i.e. we have that

∅ ∈ R and ∀σ∈Σ (σ ∈ R)

2. If α, β ∈ R, then

(αβ) ∈ R concatenation

(α ∪ β) ∈ R union

α∗ ∈ R Kleene’s Star

Regular Expressions Theorem

Theorem
The set R of regular expressions over an alphabet Σ is
countably infinite
Proof
Observe that the set Σ ∪ {(,), ∅, ∪, ∗} is non-empty and
finite, so the set (Σ∪{(,), ∅, ∪, ∗})∗ is countably infinite,
and by definition

R ⊆ (Σ ∪ {(,), ∅, ∪, ∗})∗

hence we |R| ≤ ℵ0

The set R obviously includes an infinitely countable set

∅, ∅∅, ∅∅∅, . . . , . . . ,

what proves that |R| = ℵ0

Regular Expressions

Example

Given Σ = {0, 1}, we have that

1. ∅ ∈ R, 1 ∈ R, 0 ∈ R
2. (01) ∈ R 1∗ ∈ R, 0∗ ∈ R, ∅∗ ∈ R, (∅ ∪ 1) ∈ R, . . . ,
. . . , (((0∗ ∪ 1∗) ∪ ∅)1)∗ ∈ R

Shorthand Notation when writing regular expressions we
will keep only essential parenthesis

For example, we will write

((0∗ ∪ 1∗ ∪ ∅)1)∗ instead of (((0∗ ∪ 1∗) ∪ ∅)1)∗

1∗01∗ ∪ (01)∗ instead of (((1∗0)1∗) ∪ (01)∗)

Regular Expressions and Regular Languages

We use the regular expressions from the set R as a
representation of languages

Languages represented by regular expressions are called

regular languages

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

1∗01∗ ∪ (01)∗

represents a language

L = {1}∗{0}{1}∗ ∪ {01}∗

Definition of Representation

Definition

The representation relation between regular expressions

and languages they represent is establish by a

function L such that

if α ∈ R is any regular expression, then L(α) is the

language represented by α

Definition of Representation

Formal Definition

The function L : R −→ 2Σ∗
is defined recursively as

follows

1. L(∅) = ∅, L(σ) = {σ} for all σ ∈ Σ

2. If α, β ∈ R, then

L(αβ) = L(α) ◦ L(β) concatenation

L(α ∪ β) = L(α) ∪ L(β) union

L(α∗) = L(α)∗ Kleene’s Star

Regular Language Definition

Definition

A language L ⊆ Σ∗ is regular

if and only if

L is represented by a regular expression, i.e.

when there is α ∈ R such that L = L(α)

where L : R −→ 2Σ∗
is the representation function

We use a shorthand notation

L = α for L = L(α)

Examples

E1

Given α ∈ R, for α = ((a ∪ b)∗a)

Evaluate L over an alphabet Σ = {a, b}, such that
L = L(α)

We write
α = ((a ∪ b)∗a)

in the shorthand notation as

α = (a ∪ b)∗a

Examples

We evaluate L = (a ∪ b)∗a as follows

L((a ∪ b)∗a) = L((a ∪ b)∗) ◦ L(a) = L((a ∪ b)∗) ◦ {a} =

(L(a ∪ b))∗{a} = (L(a) ∪ L(b))∗{a} = ({a} ∪ {b})∗{a}

Observe that

({a} ∪ {b})∗{a} = {a, b}∗{a} = Σ∗{a}

so we get
L = L((a ∪ b)∗a) = Σ∗{a}

L = {w ∈ {a, b}∗ : w ends with a}

Examples

E2 Given α ∈ R, for α = ((c∗a) ∪ (bc∗)∗)

Evaluate L = L(α), i.e describe L = α

We write α in the shorthand notation as

α = c∗a ∪ (bc∗)∗

and evaluate L = c∗a ∪ (bc∗)∗ as follows

L((c∗a ∪ (bc∗)∗) = L(c∗a)∪(L(bc∗))∗ = {c}∗{a} ∪ ({b}{c}∗)∗

and we get that

L = {c}∗{a} ∪ ({b}{c}∗)∗

Examples

E3 Given α ∈ R, for

α = (0∗ ∪ (((0∗(1 ∪ (11)))((00∗)(1 ∪ (11)))∗)0∗))

Evaluate L = L(α), i.e describe the language L = α

We write α in the shorthand notation as

α = 0∗ ∪ 0∗(1 ∪ 11)((00∗(1 ∪ 11))∗)0∗

and evaluate

L = L(α) = 0∗ ∪ 0∗{1, 11}(00∗{1, 11})∗0∗

Observe that 00∗ contains at least one 0 that separates
0∗{1, 11} on the left with (00∗({1, 11})∗ that follows it, so we
get that

L = {w ∈ {0, 1}∗ : w does not contain a substring 111}

