cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

LECTURE 4

CHAPTER 1

SETS, RELATIONS, and LANGUAGES

- 7. Alphabets and Languages
- 8. Finite Representation of Languages

CHAPTER 1

PART 7: Alphabets and Languages

Introduction

Data are **encoded** in the computers' memory as **strings** of bits or other **symbols** appropriate for **manipulation**

The mathematical study of the **Theory of Computation**begins with understanding of mathematics of **manipulation**of strings of symbols

We first introduce two basic notions: Alphabet and Language

Alphabet

Definition

Any finite set is called an alphabet

Elements of the **alphabet** are called **symbols** of the alphabet

This is why we also say:

Alphabet is any finite set of symbols

Alphabet

Alphabet Notation

We use a symbol ∑ to denote the **alphabet**

Remember

∑ can be ∅ as empty set is a finite set

When we want to study **non-empty alphabets** we have to say so, i.e to write:

$$\Sigma \neq \emptyset$$

Alphabet Examples

E1
$$\Sigma = \{\ddagger, \emptyset, \partial, \oint, \bigotimes, \vec{a}, \nabla\}$$

E2
$$\Sigma = \{a, b, c\}$$

E3
$$\Sigma = \{ n \in \mathbb{N} : n \le 10^5 \}$$

E4 $\Sigma = \{0, 1\}$ is called a binary alphabet

Alphabet Examples

For simplicity and consistence we will use only as **symbols** of the alphabet letters (with indices if necessary) or other common characters when needed and specified

We also write $\sigma \in \Sigma$ for a **general** form of an element in Σ

Σ is a finite set and we will write

$$\Sigma = \{a_1, a_2, \ldots, a_n\}$$
 for $n \ge 0$

Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function $f: \{1, 2, ..., n\} \longrightarrow A$ for $n \in N$

We call $f(n) = a_n$ the n-th element of the sequence f We call n the length of the sequence

$$a_1, a_2, ..., a_n$$

Case n=0

In this case the function **f** is empty and we call it an **empty sequence** and denote by **e**

Words over Σ

Let ∑ be an alphabet

We call finite sequences of the alphabet Σ words or strings over Σ

We denote by e the empty word over ∑

Some books use symbol λ for the **empty word**

Words over Σ

E5 Let
$$\Sigma = \{a, b\}$$

We will write some words (strings) over Σ in a **shorthand** notaiton as for example

instead using the formal definition:

$$f: \{1,2,3\} \longrightarrow \Sigma$$

such that f(1) = a, f(2) = a, f(3) = a for the word aaa or $g: \{1,2\} \longrightarrow \Sigma$ such that g(1) = b, g(2) = b for the word bb ... etc...

Words in Σ^*

Let ∑ be an **alphabet**. We denote by

 \sum_{i}

the set of **all finite** sequences over Σ Elements of Σ^* are called **words** over Σ We write $w \in \Sigma^*$ to express that w is a **word** over Σ

Symbols for words are

$$w, z, v, x, y, z, \alpha, \beta, \gamma \in \Sigma^*$$

 $x_1, x_2, \ldots \in \Sigma^* \quad y_1, y_2, \ldots \in \Sigma^*$

Words in Σ^*

Observe that the set of all finite sequences include the empty sequence i.e. $e \in \Sigma^*$ and we hence have the following

Fact

For any alphabet Σ ,

$$\Sigma^* \neq \emptyset$$

Chapter 1

Some Short Questions and Answers

Short Questions

Q1 Let
$$\Sigma = \{a, b\}$$

How many are there all possible words of length 5 over Σ ?

A1 By definition, words over ∑ are finite sequences; Hence words of a length 5 are functions

$$f: \{1,2,\ldots,5\} \longrightarrow \{a,b\}$$

So we have by the **Counting Functions Theorem** that there are 2^5 words of a length **5** over $\Sigma = \{a, b\}$

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A, B, there are

 $|B|^{|A|}$

functions that map A into B

The **proof** is in Lecture 2, Part 5

Short Questions

Q2

Let $\Sigma = \{a_1, ..., a_k\}$ where $k \ge 1$ How many are there possible **words** of length $\le n$ for $n \ge 0$ in Σ^* ?

A2

By the **Counting Functions Theorem** there are

$$k^0 + k^1 + \cdots + k^n$$

words of length $\leq n$ over Σ because for each m there are k^m words of length m over $\Sigma = \{a_1, \ldots, a_k\}$ and $m = 0, 1 \ldots n$

Short Questions

Q3 Given an alphabet $\Sigma \neq \emptyset$

How many are there words in the set Σ^* ?

A3

There are **infinitely countably** many **words** in Σ^* by the Theorem 5 (Lecture 2) that says: " for any non empty, finite set A, $|A^*| = \aleph_0$ "

We hence proved the following

Theorem

For any alphabet $\Sigma \neq \emptyset$, the set Σ^* of all words over Σ is **countably infinite**

Language Definition

Given an alphabet Σ , any set L such that

$$L\subseteq \Sigma^*$$

is called a **language over** ∑

Fact 1

For any alphabet Σ , any language over Σ is **countable**

Languages over $\boldsymbol{\Sigma}$

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are uncountably many languages over Σ

More precisely, there are exactly $\mathcal{C}=|R|$ of languages over any non - empty alphabet Σ

Fact 1

For any alphabet Σ , any language over Σ is **countable Proof**

By definition, a set is **countable** if and only if is finite or countably infinite

- 1. Let $\Sigma = \emptyset$, hence $\Sigma^* = \{e\}$ and we have two languages
- \emptyset , $\{e\}$ over Σ , both finite, so **countable**
- 2. Let $\Sigma \neq \emptyset$, then Σ^* is countably infinite, so obviously any
- $L \subseteq \Sigma^*$ is finite or countably infinite, hence **countable**

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are exactly $\mathcal{C} = |R|$ of languages over any non - empty alphabet Σ

Proof

We proved that $|\Sigma^*| = \aleph_0$ By definition $L \subseteq \Sigma^*$, so there is as many languages over Σ as all subsets of a set of cardinality \aleph_0 — that is as many as $2^{\aleph_0} = \mathcal{C}$

Q4 Let
$$\Sigma = \{a\}$$

There is \aleph_0 languages over Σ

NO

We just proved that that there is uncountably many, more precisely, exactly $\mathcal C$ languages over $\Sigma \neq \emptyset$ and we know that

$$\aleph_0 < \mathcal{C}$$

Some Basic Definitions

Some Basic Definitions

Definition

Given an alphabet Σ and a word $w \in \Sigma^*$ We say that w has a **length** n = l(w) = |w| when

$$w:\; \{1,2,\ldots,n\} \; \longrightarrow \; \Sigma$$

We re-write w as

$$w: \{1,2,\ldots,|w|\} \longrightarrow \Sigma$$

Some Basic Definitions

We define now a **position** of $\sigma \in \Sigma$ in a word $w \in \Sigma^*$ as follows

Definition

Given $\sigma \in \Sigma$ and a word $w \in \Sigma^*$

 $\sigma \in \Sigma$ occurs in the **j-th position** in $w \in \Sigma^*$ if and only if $w(j) = \sigma$ for $1 \le j \le |w|$

Some Examples

E6 Consider a word w written in a shorthand as

$$w = anita$$

By formal definition we have

$$w(1) = a$$
, $w(2) = n$, $w(3) = i$, $w(4) = t$, $w(5) = a$ and a occurs in the 1st and 5th position

Some Examples

```
E7 Let \Sigma = \{0, 1\} and w = 01101101 (shorthand) Formally w : \{1, 2, ..., 8\} \longrightarrow \{0, 1\} is such that w(1) = 0, w(2) = 1, w(3) = 1, w(4) = 0, w(5) = 1, w(6) = 1, w(7) = 0, w(8) = 1
1 occurs in the positions 2, 3, 5, 6 and 8
0 occurs in the positions 1, 4, 7
```

Informal Concatenation

Concatenation (Informal Definition) Given an alphabet Σ and any words $x,y\in\Sigma^*$ We define informally a **concatenation** \circ of words x,y as a word w obtained from x,y by writing the word x followed by the word y

Informal Concatenation

We write the **concatenation** of words x, y as

$$w = x \circ y$$

We use the symbol of **concatenation** when it is needed formally, otherwise we will write simply

$$w = xy$$

Formal Concatenation

Definition

Given an alphabet Σ and any words $x, y \in \Sigma^*$ We define:

$$\mathbf{w} = \mathbf{x} \circ \mathbf{y}$$

if and only if

1.
$$|w| = |x| + |y|$$

2.
$$w(j) = x(j)$$
 for $j = 1, 2, ..., |x|$

2.
$$w(|x|+j) = y(j)$$
 for $j = 1, 2, ..., |y|$

Formal Concatenation

Properties

Directly from definition we have that

$$w \circ e = e \circ w = w$$

Concatenation of words is associative

$$(x \circ y) \circ z = x \circ (y \circ z) = x \circ y \circ z$$

Formal Concatenation

Remark

We need to define a concatenation of two words only and then we define

$$x_1 \circ x_2 \circ \cdots \circ x_n = (x_1 \circ x_2 \circ \cdots \circ x_{n-1}) \circ x_n$$

and prove by Mathematical Induction that

$$W = X_1 \circ X_2 \circ \cdots \circ X_n$$

is well defined for all n > 2

Substring

Definition

A word $v \in \Sigma^*$ is a **substring** (sub-word) of **w** iff there are $x, y \in \Sigma^*$ such that

$$\mathbf{w} = \mathbf{x} \mathbf{v} \mathbf{y}$$

Remark: the words $x, y \in \Sigma^*$, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string (any word w)

as we have that ew = we = w

Definition Let w = xy

x is called a prefix and y is called a suffix of w

Power wⁱ

Definition

We define a **power** w^i of w recursively as follows

$$w^0 = e$$

$$w^{i+1} = w^i \circ w$$

This type of definition is called **definition by induction**

E8

$$w^0 = e, \ w^1 = w^0 \circ w = e \circ w = w, \ w^2 = w^1 \circ w = w \circ w$$

E9

 $anita^2 = anita^1 \circ anita = e \circ anita \circ anita = anita \circ anita$

Reversal w^R

Definition

Reversal w^R of w is defined by induction over length |w| of w as follows

- **1.** If |w| = 0, then $w^R = w = e$
- 2. If |w| = n + 1 > 0, then w = ua for some $a \in \Sigma$, and $u \in \Sigma^*$ and we define

$$w^R = au^R$$
 for $|u| < n+1$

Short Definition of w^R

- 1. $e^{R} = e$
- **2.** $(ua)^R = au^R$

Reversal Proof

We prove now as an example of Inductive proof the following Fact

For any
$$w, x \in \Sigma^*$$

$$(wx)^R = x^R w^R$$

Proof by Mathematical Induction over the length |x| of x with |w| = constant

Base case n=0

|x| = 0, i.e. x=e and by definition

$$(we)^{R} = (w)^{R} = ew^{R} = e^{R}w^{R}$$

Reversal Proof

Inductive Assumption

$$(wx)^R = x^R w^R$$
 for all $|x| \le n$

Let now |x| = n + 1, so x = ua for certain $a \in \Sigma$, $u \in \Sigma^*$ and |u| = n

We evaluate

$$(wx)^R = (w(ua))^R = ((wu)a)^R$$

= $^{def} a(wu)^R = ^{ind} a(u^Rw^R) = (au^R)w^R = ^{def} (ua)^Rw^R = x^Rw^R$

Languages over Σ

Definition

Given an alphabet Σ , any set L such that $L \subseteq \Sigma^*$ is called a **language** over Σ

Observe that \emptyset , Σ , Σ^* are all languages over Σ We have proved

Theorem

Any language L over Σ , is finite or infinitely countable

Languages over Σ

Languages are **sets** so we can define them in ways we did for sets, by listing elements (for small finite sets) or by giving a **property** P(w) **defining** L, i.e. by setting

$$L = \{w \in \Sigma^* : P(w)\}$$

E1

$$L_1 = \{ w \in \{0, 1\}^* : w \text{ has an even number of 0's } \}$$

E2

$$L_2 = \{ w \in \{a, b\}^* : w \text{ has ab as a sub-string } \}$$

Languages Examples

$$L_3 = \{w \in \{0,1\}^*: \ |w| \le 2\}$$

E4

$$L_4 = \{e, 0, 1, 00, 01, 11, 10\}$$

Observe that $L_3 = L_4$

Languages Examples

Languages are **sets** so we can define set operations of union, intersection, generalized union, generalized intersection, complement, Cartesian product, ... etc ... of languages as we did for any sets

For example, given L, L_1 , $L_2 \subseteq \Sigma^*$, we consider

$$L_1 \cup L_2, L_1 \cap L_2, L_1 - L_2,$$

$$-L = \Sigma^* - L$$
, $L_1 \times L_2$, ... etc

and we have that all properties of **algebra of sets** hold for any languages over a given alphabet Σ

Special Operations on Languages

We define now a special operation on languages, different from any of the **set** operation

Concatenation Definition

Given L_1 , $L_2 \subseteq \Sigma^*$, a language

$$L_1 \circ L_2 = \{ w \in \Sigma^* : w = xy \text{ for some } x \in L_1, y \in L_2 \}$$

is called a **concatenation** of the languages L_1 and L_2

Concatenation of Languages

The concatenation $L_1 \circ L_2$ domain issue

We can have that the languages L_1 , L_2 are defined over **different domains**, i.e. they have two alphabets $\Sigma_1 \neq \Sigma_2$ for

$$L_1 \subseteq \Sigma_1^*$$
 and $L_2 \subseteq \Sigma_2^*$

In this case we always take

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
 and get $L_1, L_2 \subseteq \Sigma^*$

E5

Let L_1 , L_2 be languages defined below

$$L_1 = \{ w \in \{a, b\}^* : |w| \le 1 \}$$

 $L_2 = \{ w \in \{0, 1\}^* : |w| \le 2 \}$

Describe the concatenation $L_1 \circ L_2$ of L_1 and L_2

Domain
$$\Sigma$$
 of $L_1 \circ L_2$
We have that $\Sigma_1 = \{a,b\}$ and $\Sigma_2 = \{0,1\}$
so we take $\Sigma = \Sigma_1 \cup \Sigma_2 = \{a,b,0,1\}$ and $L_1 \circ L_2 \subset \Sigma$

Let L₁, L₂ be languages defined below

$$L_1 = \{ w \in \{a, b\}^* : |w| \le 1 \}$$

$$L_2 = \{ w \in \{0,1\}^* : |w| \le 2 \}$$

We write now a **general formula** for $L_1 \circ L_2$ as follows

$$L_1 \circ L_2 = \{w \in \Sigma^* : w = xy \}$$

where

$$x \in \{a, b\}^*, y \in \{0, 1\}^* \text{ and } |x| \le 1, |y| \le 2$$

E5 revisited

Describe the concatenation of
$$L_1=\{w\in\{a,b\}^*: |w|\leq 1\}$$
 and $L_2=\{w\in\{0,1\}^*: |w|\leq 2\}$

As both languages are finite, we **list** their elements and get

$$L_1 = \{e, a, b\}, L_2 = \{e, 0, 1, 01, 00, 11, 10\}$$

We **describe** their concatenation as

$$L_1 \circ L_2 = \{ey: y \in L_2\} \cup \{ay: y \in L_2\} \cup \{by: y \in L_2\}$$

Here is another general formula for $L_1 \circ L_2$

$$L_1 \circ L_2 = e \circ L_2 \cup (\{a\} \circ L_2) \cup (\{b\} \circ L_2)$$

E6

Describe concatenations $L_1 \circ L_2$ and $L_2 \circ L_1$ of

$$L_1 = \{ w \in \{0,1\}^* : w \text{ has an even number of 0's} \}$$

and

$$L_2 = \{ w \in \{0,1\}^* : w = 0xx, x \in \Sigma^* \}$$

Here the are

$$L_1 \circ L_2 = \{w \in \Sigma^* : w \text{ has an odd number of 0's}\}$$

 $L_2 \circ L_1 = \{w \in \Sigma^* : w \text{ starts with 0}\}$

We have that

```
L_1 \circ L_2 = \{ w \in \Sigma^* : w \text{ has an odd number of 0's} \}

L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with 0} \}
```

Observe that

$$1000 \in L_1 \circ L_2$$
 and $1000 \notin L_2 \circ L_1$

This proves that

$$L_1 \circ L_2 \neq L_2 \circ L_1$$

We hence **proved** the following

Fact

Concatenation of languages is not commutative

E8

Let L_1 , L_2 be languages defined below for $\Sigma = \{0,1\}$ $L_1 = \{w \in \Sigma^* : w = x1, x \in \Sigma^*\}$ $L_2 = \{w \in \Sigma^* : w = 0x, x \in \Sigma^*\}$ Describe the language $L_2 \circ L_1$ Here it is

$$L_2 \circ L_1 = \{ w \in \Sigma^* : w = 0xy1, x, y \in \Sigma^* \}$$

Observe that $L_2 \circ L_1$ can be also defined by a property as follows

```
L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with } 0 \text{ and ends with } 1 \}
```


Distributivity of Concatenation

Theorem

Concatenation is distributive over union of languages

More precisely, given languages L, L_1 , L_2 ,..., L_n , the following holds for any $n \ge 2$

$$(L_1 \cup L_2 \cup \cdots \cup L_n) \circ L = (L_1 \circ L) \cup \cdots \cup (L_n \circ L)$$
$$L \circ (L_1 \cup L_2 \cup \cdots \cup L_n) = (L \circ L_1) \cup \cdots \cup (L \circ L_n)$$

Proof by Mathematical Induction over $n \in \mathbb{N}$, n > 2

Distributivity of Concatenation Proof

We prove the **base case** for the first equation and leave the Inductive argument and a similar proof of the second equation as an exercise

Base Case n=2

We have to prove that

$$(L_1 \cup L_2) \circ L = (L_1 \circ L) \cup (L_2 \circ L)$$

$$w \in (L_1 \cup L_2) \circ L \quad \text{iff} \quad \text{(by definition of } \circ \text{)}$$

$$(w \in L_1 \text{ or } w \in L_2) \text{ and } w \in L \quad \text{iff} \quad \text{(by distributivity of and over or)}$$

$$(w \in L_1 \text{ and } w \in L) \text{ or } (w \in L_2 \text{ and } w \in L) \quad \text{iff} \quad \text{(by definition of } \circ \text{)}$$

$$(w \in L_1 \circ L) \text{ or } (w \in L_2 \circ L) \quad \text{iff} \quad \text{(by definition of } \cup \text{)}$$

$$w \in (L_1 \circ L) \cup (L_2 \circ L)$$

Kleene Star - L*

Kleene Star L* of a language L is yet another operation **specific** to languages

It is named after Stephen Cole Kleene (1909 -1994), an American mathematician and world famous logician who also helped lay the foundations for theoretical computer science

We define L^* as the set of all strings obtained by concatenating zero or more strings from L

Remember that concatenation of zero strings is e, and concatenation of one string is the string itself

Kleene Star - L*

We define L* formally as

$$L^* = \{w_1 w_2 \dots w_k : \text{for some } k \ge 0 \text{ and } w_1, \dots, w_k \in L\}$$

We also write as

$$L^* = \{w_1 w_2 \dots w_k : \ k \ge 0, \ w_i \in L, \ i = 1, 2, \dots, k\}$$

or in a form of Generalized Union

$$L^* = \bigcup_{k \ge 0} \{ w_1 w_2 \dots w_k : w_1, \dots, w_k \in L \}$$

Remark we write xyz for $x \circ y \circ z$. We use the concatenation symbol \circ when we want to stress that we talk about some properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic properties

P1
$$e \in L^*$$
, for all L

Follows directly from the definition as we have case k = 0

P2
$$L^* \neq \emptyset$$
, for all L

Follows directly from **P1**, as $e \in L^*$

P3
$$\emptyset^* \neq \emptyset$$

Because $L^* = \emptyset^* = \{e\} \neq \emptyset$

Kleene Star Properties

Some more Kleene Star basic properties

```
P4 L^* = \Sigma^* for some L

Take L = \Sigma

P6 L^* \neq \Sigma^* for some L

Take L = \{00, 11\} over \Sigma = \{0, 1\}

We have that

01 \notin L^* and 01 \in \Sigma^*
```

Example

Observation

The property **P4** provides a quite trivial example of a language L over an alphabet Σ such that $L^* = \Sigma^*$, namely just $L = \Sigma$

A natural question arises: is there any language $L \neq \Sigma$ such that nevertheless $L^* = \Sigma^*$?

Example

Example

Take $\Sigma = \{0, 1\}$ and take

 $L = \{ w \in \Sigma^* : w \text{ has an unequal number of 0 and 1} \}$

Some words in and out of L are

$$100 \in L$$
, $00111 \in L$ $100011 \notin L$

We now **prove** that

$$L^* = \{0, 1\}^* = \Sigma^*$$

Example Proof

Given

 $L = \{w \in \{0,1\}^* : w \text{ has an unequal number of } 0 \text{ and } 1\}$ We now **prove** that

$$L^* = \{0,1\}^* = \Sigma^*$$

Proof

By definition we have that $L \subseteq \{0,1\}^*$ and $\{0,1\}^{**} = \{0,1\}^*$

By the the following property of languages:

P: If
$$L_1 \subseteq L_2$$
, then $L_1^* \subseteq L_2^*$

and get that

$$L^* \subseteq \{0,1\}^{**} = \{0,1\}^*$$
 i.e. $L^* \subseteq \Sigma^*$

Example Proof

Now we have to show that $\Sigma^* \subseteq L^*$, i.e.

$$\{0,1\}^* \subseteq \{w \in 0,1^*: w \text{ has an unequal number of } 0 \text{ and } 1\}$$

Observe that

 $0 \in L$ because 0 regarded as a string over Σ has an unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of appearances of 0 is one

 $1 \in L$ for the same reason a $0 \in L$

So we proved that $\{0, 1\} \subseteq L$

We now use the property **P** and get

$$\{0, 1\}^* \subseteq L^*$$
 i.e $\Sigma^* \subseteq L^*$

what ends the proof that $\Sigma^* = L^*$

$$L^*$$
 and L^+

We define

$$L^+ = \{w_1 w_2 \dots w_k : \text{for some } k \ge 1 \text{ and some } w_1, \dots, w_k \in L\}$$

We write it also as follows

$$L^+ = \{ w_1 w_2 \dots w_k : k \ge 1 \ w_i \in L, i = 1, 2, \dots, k \}$$

Properties

P1:
$$L^+ = L \circ L^*$$
 P2: $e \in L^+$ iff $e \in L$

 L^* and L^+

We know that

 $e \in L^*$ for all L

Show that

For some language L we have that $e \in L^+$ and for some language L we can have that $e \notin L^+$

E1

Obviously, for any L such that $e \in L$ we have that $e \in L^+$

E2

If L is such that $e \notin L$ we have that $e \notin L^+$ as L^+ does not have a case k=0

CHAPTER 1 PART 8: Finite Representation of Languages

Finite Representation of Languages Introduction

We can represent a finite language by **finite means** for example listing all its elements

Languages are often infinite and so a natural question arises if a **finite representation** is possible and when it is possible when a language is infinite

The representation of languages by **finite specifications** is a central issue of the theory of computation

Of course we have to define first formally what do we mean by representation by finite specifications, or more precisely by a finite representation

Idea of Finite Representation

We start with an **example**: let

$$L = \{a\}^* \cup (\{b\} \circ \{a\}^*) = \{a\}^* \cup (\{b\}\{a\}^*)$$

Observe that by definition of Kleene's star

$${a}^* = {e, a, aa, aaa ...}$$

and L is an infinite set

$$L = \{e, a, aa, aaa \dots\} \cup \{b\} \{e, a, aa, aaa \dots\}$$

 $L = \{e, a, aa, aaa \dots\} \cup \{b, ba, baa, baaa \dots\}$

 $L = \{e, a, b, aa, ba, aaa baa, ...\}$

Idea of Finite Representation

The expression $\{a\}^* \cup (\{b\}\{a\}^*)$ is built out of a finite number of **symbols**:

$$\{, \}, (,), *, \cup$$

and describe an infinite set

$$L = \{e, a, b, aa, ba, aaa baa, ...\}$$

We write it in a **simplified form** - we skip the set symbols {, } as we know that **languages** are **sets** and we have

$$a^* \cup (ba^*)$$

Idea of Finite Representation

We will call such expressions as

$$a^* \cup (ba^*)$$

a finite representation of a language L

The idea of the finite representation is to use symbols

$$(,), *, \cup, \emptyset$$
, and symbols $\sigma \in \Sigma$

to write expressions that describe the language L

Example of a Finite Representation

Let L be a language defined as follows

 $L = \{w \in \{0, 1\}^* : w \text{ has two or three occurrences of 1}$ the **first** and the **second** of which **are not consecutive** }

The language L can be expressed as

$$L = \{0\}^*\{1\}\{0\}^*\{0\} \circ \{1\}\{0\}^*(\{1\}\{0\}^* \cup \emptyset^*)$$

We will define and write the **finite representation** of **L** as

$$L = 0*10*010*(10* \cup \emptyset*)$$

We call expression above (and others alike) a **regular expression**

Problem with Finite Representation

Question

Can we **finitely represent** all languages over an alphabet $\Sigma \neq \emptyset$?

Observation

- **O1.** Different languages must have different representations
- **O2.** Finite representations are finite strings over a finite set, so we have that

there are \aleph_0 possible finite representations

Problem with Finite Representation

O3. There are uncountably many, precisely exactly

 $\mathcal{C} = |R|$) of possible languages over any alphabet $\Sigma \neq \emptyset$

Proof

For any $\Sigma \neq \emptyset$ we have proved that

$$|\Sigma^*| = \aleph_0$$

By definition of language

$$L \subseteq \Sigma^*$$

so there are as many languages as subsets of Σ^* that is as many as

$$|2^{\Sigma^*}|=2^{\aleph_0}=\mathcal{C}$$

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet $\Sigma \neq \emptyset$?

Answer

No. we can't

By **O2** and **O3** there are countably many (exactly \aleph_0) possible finite representations and there are uncountably many (exactly \mathcal{C}) possible languages over any $\Sigma \neq \emptyset$ This **proves** that

NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED.

Problem with Finite Representation

Moreover

There are **uncountably** many and exactly as many as Real numbers, i.e. \mathcal{C} languages that **can not** be **finitely** represented

We can **finitely represent** only a small, **countable** portion of languages

We define and study here only two classes of languages:

REGULAR and CONTEXT FREE languages

Regular Expressions Definition

Definition

We define a \mathcal{R} of **regular expressions** over an alphabet Σ as follows

 $\mathcal{R}\subseteq (\Sigma\cup\{(,\),\ \emptyset,\ \cup,\ *\})^*$ and \mathcal{R} is the smallest set such that

1. $\emptyset \in \mathcal{R}$ and $\Sigma \subseteq \mathcal{R}$, i.e. we have that

$$\emptyset \in \mathcal{R}$$
 and $\forall_{\sigma \in \Sigma} (\sigma \in \mathcal{R})$

2. If $\alpha, \beta \in \mathcal{R}$, then

$$(\alpha\beta)\in\mathcal{R}$$
 concatenation

$$(\alpha \cup \beta) \in \mathcal{R}$$
 union

$$\alpha^* \in \mathcal{R}$$
 Kleene's Star

Regular Expressions Theorem

Theorem

The set \mathcal{R} of **regular expressions** over an alphabet Σ is countably infinite

Proof

Observe that the set $\Sigma \cup \{(,), \emptyset, \cup, *\}$ is non-empty and **finite**, so the set $(\Sigma \cup \{(,), \emptyset, \cup, *\})^*$ is **countably infinite**, and by definition

$$\mathcal{R} \subseteq (\Sigma \cup \{(,), \emptyset, \cup, *\})^*$$

hence we $|\mathcal{R}| \leq \aleph_0$

The set R obviously includes an infinitely countable set

$$\emptyset$$
, $\emptyset\emptyset$, $\emptyset\emptyset\emptyset$, ...,...,

what proves that $|\mathcal{R}| = \aleph_0$

Regular Expressions

Example

Given $\Sigma = \{0, 1\}$, we have that

- **1.** $\emptyset \in \mathcal{R}$, $1 \in \mathcal{R}$, $0 \in \mathcal{R}$
- **2.** $(01) \in \mathcal{R} \ 1^* \in \mathcal{R}, \ 0^* \in \mathcal{R}, \ \emptyset^* \in \mathcal{R}, \ (\emptyset \cup 1) \in \mathcal{R}, \dots, \dots, \ (((0^* \cup 1^*) \cup \emptyset)1)^* \in \mathcal{R}$

Shorthand Notation when writing regular expressions we will **keep only** essential parenthesis

For example, we will write

```
((0^* \cup 1^* \cup \emptyset)1)^* instead of (((0^* \cup 1^*) \cup \emptyset)1)^*
1^*01^* \cup (01)^* instead of (((1^*0)1^*) \cup (01)^*)
```

Regular Expressions and Regular Languages

We use the regular expressions from the set \mathcal{R} as a representation of languages

Languages **represented** by **regular expressions** are called **regular languages**

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

$$1*01* \cup (01)*$$

represents a language

$$L = \{1\}^* \{0\} \{1\}^* \cup \{01\}^*$$

Definition of Representation

Definition

The representation relation between regular expressions and languages they represent is establish by a function $\mathcal L$ such that if $\alpha \in \mathcal R$ is any regular expression, then $\mathcal L(\alpha)$ is the language represented by α

Definition of Representation

Formal Definition

The function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$ is defined recursively as follows

- **1.** $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\sigma) = \{\sigma\}$ for all $\sigma \in \Sigma$
- **2.** If $\alpha, \beta \in \mathcal{R}$, then

$$\mathcal{L}(lphaeta) = \mathcal{L}(lpha) \circ \mathcal{L}(eta)$$
 concatenation $\mathcal{L}(lpha \cup eta) = \mathcal{L}(lpha) \cup \mathcal{L}(eta)$ union $\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$ Kleene's Star

Regular Language Definition

Definition

A language $L \subseteq \Sigma^*$ is regular

if and only if

L is represented by a regular expression, i.e.

when there is $\alpha \in \mathcal{R}$ such that $L = \mathcal{L}(\alpha)$

where $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$ is the representation function

We use a shorthand notation

$$L = \alpha$$
 for $L = \mathcal{L}(\alpha)$

E1

Given
$$\alpha \in \mathcal{R}$$
, for $\alpha = ((a \cup b)^*a)$

Evaluate L over an alphabet $\Sigma = \{a, b\}$, such that $L = \mathcal{L}(\alpha)$

We write

$$\alpha = ((a \cup b)^*a)$$

in the shorthand notation as

$$\alpha = (a \cup b)^*a$$

We evaluate $L = (a \cup b)^*a$ as follows

$$\mathcal{L}((a \cup b)^*a) = \mathcal{L}((a \cup b)^*) \circ \mathcal{L}(a) = \mathcal{L}((a \cup b)^*) \circ \{a\} = (\mathcal{L}(a \cup b))^*\{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^*\{a\} = (\{a\} \cup \{b\})^*\{a\})$$

Observe that

$$(\{a\} \cup \{b\})^*\{a\} = \{a, b\}^*\{a\} = \Sigma^*\{a\}$$

so we get

$$L = \mathcal{L}((a \cup b)^*a) = \Sigma^*\{a\}$$

$$L = \{w \in \{a, b\}^* : w \text{ ends with } a\}$$

E2 Given
$$\alpha \in \mathcal{R}$$
, for $\alpha = ((c^*a) \cup (bc^*)^*)$ **Evaluate** $L = \mathcal{L}(\alpha)$, i.e **describe** $L = \alpha$

We write α in the shorthand notation as

$$\alpha = c^* a \cup (bc^*)^*$$

and evaluate $L = c^*a \cup (bc^*)^*$ as follows

$$\mathcal{L}((c^*a \cup (bc^*)^*) = \mathcal{L}(c^*a) \cup (\mathcal{L}(bc^*))^* = \{c\}^*\{a\} \cup (\{b\}\{c\}^*)^*$$

and we get that

$$L = \{c\}^*\{a\} \cup (\{b\}\{c\}^*)^*$$

E3 Given $\alpha \in \mathcal{R}$, for

$$\alpha = (0^* \cup (((0^*(1 \cup (11)))((00^*)(1 \cup (11)))^*)0^*))$$

Evaluate $L = \mathcal{L}(\alpha)$, i.e **describe** the language $L = \alpha$ We write α in the **shorthand** notation as

$$\alpha = 0^* \cup 0^* (1 \cup 11)((00^* (1 \cup 11))^*)0^*$$

and evaluate

$$L = \mathcal{L}(\alpha) = 0^* \cup 0^* \{1, 11\} (00^* \{1, 11\})^* 0^*$$

Observe that 00^* contains at least one 0 that separates $0^*\{1,11\}$ on the left with $(00^*(\{1,11\})^*$ that follows it, so we get that

 $L = \{w \in \{0, 1\}^* : w \text{ does not contain a substring } 111\}$

