# cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

# **LECTURE 3**

# CHAPTER 1 SETS, RELATIONS, and LANGUAGES

- 6.Closures and Algorithms
- 7. Alphabets and Languages
- 8. Finite Representation of Languages

# CHAPTER 1 PART 6: Closures and Algorithms

#### Closures - Intuitive

#### Idea

Natural numbers N are **closed** under +, i.e. for given two natural numbers n, m we always have that  $n+m\in N$ Natural numbers N are **not closed** under subtraction -, i.e there are two natural numbers n, m such that  $n-m\notin N$ , for example  $1,2\in N$  and  $1-2\notin N$ 

Integers Z are **closed** under—, moreover Z is the smallest set containing N and closed under subtraction —

The set Z is called a **closure** of N under subtraction —

#### Closures - Intuitive

Consider the two directed graphs R (a) and  $R^*$  (b) as shown below



Observe that  $R^* = R \cup \{(a_i, a_i) : i = 1, 2, 3, 4\} \cup \{(a_2, a_4)\}$ ,  $R \subseteq R^*$  and is  $R^*$  is reflexive and transitive whereas R is neither, moreover  $R^*$  is also the smallest set containing R that is reflexive and transitive

We call such relation  $R^*$  the reflexive, transitive closure of R We define this concept formally in two ways and prove the equivalence of the two definitions



#### Two Definitions of R\*

#### **Definition 1** of R\*

 $R^*$  is called a reflexive, transitive closure of R iff  $R \subseteq R^*$  and is  $R^*$  is reflexive and transitive and is the smallest set with these properties

This definition is based on a notion of a **closure property** which is any property of the form "the set B is closed under relations  $R_1, R_2, \ldots, R_m$ "

We define it formally and prove that reflexivity and transitivity are closures properties

Hence we **justify** the name: reflexive, transitive closure of R for R\*

#### Two Definitions of R\*

#### **Definition 2** of R\*

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in R}\}$$

This is a much simpler definition- and algorithmically more interesting as it uses a simple notion of a path

We hence start our investigations from it- and only later introduce all notions needed for the **Definition 1** in order to prove that the  $R^*$  defined above is really what its name says: the **reflexive**, **transitive closure of** R

#### Definition 2 of R\*

We bring back the following

#### **Definition**

A **path** in the binary relation R is a finite sequence

$$a_1, ..., a_n$$
 such that  $(a_i, a_{i+1}) \in R$ , for  $i = 1, 2, ..., n-1$  and  $n \ge 1$ 

The path  $a_1, \ldots, a_n$  is said to be from  $a_1$  to  $a_n$ The path  $a_1$  (case when n=1) always exist and is called a trivial path from  $a_1$  to  $a_1$ 

#### **Definition 2**

Let R be a binary relation on a set A

The **reflexive**, **transitive** closure of R is the relation

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in R}\}$$



# **Algorithms**

**Definition 2** immediately suggests an following algorithm for computing the reflexive transitive closure  $R^*$  of any given binary relation R over some finite set  $A = \{a_1, a_2, \ldots, a_n\}$ 

# Algorithm 1

```
Initially R^* := 0
for i = 1, 2, ..., n do
for each i- tuple (b_1, ..., b_i) \in A^i do
if b_1, ..., b_i is a path in R then add (b_1, b_n) to R^*
```



# **Algorithms**

The Book develops and prove correctness of afollowing much faster algorithm

# Algorithm 2

```
Initially R^* := R \cup \{(a_i, a_i) : a_i \in A\} for j = 1, 2, ..., n do for i = 1, 2, ..., n and k = 1, 2, ..., n do if (a_i, a_j), (a_j, a_k) \in R^* but (a_i, a_k) \notin R^* then add (a_i, a_k) to R^*
```

# Closure Property Formal

We introduce now formally a concept of a closure property of a given set

#### **Definition**

Let D be a set, let  $n \ge 0$  and let  $R \subseteq D^{n+1}$  be a (n+1)-ary relation on D Then the subset B of D is said to be **closed under** R if  $b_{n+1} \in B$  whenever  $(b_1, \ldots, b_n, b_{n+1}) \in R$ 

Any property of the form "the set B is closed under relations  $R_1, R_2, ..., R_m$ " is called a **closure property** of B



# Closure Property Examples

Observe that any function  $f: D^n \longrightarrow D$  is a special relation  $f \subseteq D^{n+1}$  so we have also defined what does it mean that a set  $A \subseteq D$  is **closed under** the function f

E1: + is a closure property of N

Addition is a function  $+: N \times N \longrightarrow N$  defined by a formula +(n,m) = n+m, i.e. it is a **relation**  $+\subseteq N \times N \times N$  such that

$$+ = \{(n, m, n + m) : n, m \in N\}$$

Obviously the set  $N \subseteq N$  is (formally) closed under + because

for any  $n, m \in N$  we have that  $(n, m, n + m) \in +$ 

# Closures Property Examples

**E2:** 
$$\cap$$
 is a closure property of  $2^N$ 

$$\cap \subseteq \mathbf{2}^{N} \times \mathbf{2}^{N} \times \mathbf{2}^{N}$$
 is defined as

$$(A, B, C) \in \cap$$
 iff  $A \cap B = C$ 

and the following is true for all  $A, B, C \in 2^N$ 

if 
$$A, B \in 2^N$$
 and  $(A, B, C) \in \cap$  then  $C \in 2^N$ 

### Closure Property Fact1

Since relations are sets, we can speak of one relation as being closed under one or more others

We show now the following

#### **CP Fact 1**

Transitivity is a closure property

#### **Proof**

Let D be a set, let Q be a ternary relation on  $D \times D$ , i.e.

$$Q \subseteq (D \times D)^3$$
 be such that

$$Q = \{((a,b),(b,c),(a,c)): a,b,c \in D\}$$

**Observe** that for any binary relation  $R \subseteq D \times D$ ,

R is closed under Q if and only if R is transitive



#### CP Fact1 Proof

The definition of closure of R under Q says: for any  $x, y, z \in D \times D$ ,

if 
$$x, y \in R$$
 and  $(x, y, z) \in Q$  then  $z \in R$ 

But 
$$(x, y, z) \in Q$$
 iff  $x = (a, b), y = (b, c), z = (a, c)$  and

$$(a,b),(b,c)\in R$$
 implies  $(a,c)\in R$ 

is a true statement for all  $a, b, c \in D$  iff R is transitive



## Closure Property Fact2

We show now the following

#### CP Fact 2

Reflexivity is a closure property

#### **Proof**

Let  $D \neq \emptyset$ , we define an unary relation Q' on  $D \times D$ , i.e.  $Q' \subseteq D \times D$  as follows

$$Q' = \{(a,a): a \in D\}$$

Observe that for any R binary relation on D, i.e.  $R \subseteq D \times D$  we have that

R is closed under Q' iff R is reflexive



# Closure Property Theorem

#### **CP Theorem**

Let P be a closure property defined by relations on a set D, and let  $A \subseteq D$ 

Then there is a unique minimal set B such that  $B \subseteq A$  and B has property P

#### Two Definition of R\* Revisited

#### **Definition 1**

 $R^*$  is called a reflexive, transitive closure of R iff  $R \subseteq R^*$  and is  $R^*$  is reflexive and transitive and is the smallest set with these properties

#### **Definition 2**

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in R}\}$$

# EquivalencyTheorem

R\* of the **Definition 2** is the same as R\* of the **Definition 1** and hence richly deserves its name reflexive, transitive closure of R



#### **Proof** Let

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in R}\}$$

 $R^*$  is reflexive for there is a trivial path (case n=1) from a to a, for any  $a \in A$ 

 $R^*$  is transitive as for any  $a, b, c \in A$ 

if there is a path from a to b and a path from b to c, then there is a path from a to c

Clearly  $R \subseteq R^*$  because there is a path from a to b whenever  $(a, b) \in R$ 



Consider a set S of all binary relations on A that contain R and are reflexive and transitive, i.e.

$$S = \{Q \subseteq A \times A : R \subseteq Q \text{ and } Q \text{ is reflexive and transitive } \}$$

We have just proved that  $R^* \in S$ 

We prove now that  $R^*$  is the smallest set in the poset  $(S, \subseteq)$ , i.e. that for any  $Q \in S$  we have that  $R^* \subseteq Q$ 



Assume that  $(a, b) \in \mathbb{R}^*$ . By Definition 2 there is a path  $a = a_1, \ldots, a_k = b$  from a to b and let  $Q \in \mathcal{S}$ 

We prove by Mathematical Induction over the length k of the path from a to b

Base case: k=1

We have that the path is  $a = a_1 = b$ , i.e.  $(a, a) \in \mathbb{R}^*$  and  $(a, a) \in \mathbb{Q}$  from reflexivity of  $\mathbb{Q}$ 

# **Inductive Assumption:**

Assume that for any  $(a, b) \in R^*$  such that there is a path of length k from a to b we have that  $(a, b) \in Q$ 

## Inductive Step:

Let  $(a,b) \in \mathbb{R}^*$  be now such that there is a path of length k+1 from a to b, i.e there is a path  $a=a_1,\ldots,a_k,\ a_{k+1}=b$ By inductive assumption  $(a=a_1,a_k)\in Q$  and by definition of

the path  $(a_k, a_{k+1} = b) \in R$ But  $R \subseteq Q$  hence  $(a_k, a_{k+1} = b) \in Q$  and  $(a, b) \in Q$  by transitivity

This **ends the proof** that Definition 2 of  $R^*$  implies the Definition1

The inverse implication follows from the previously proven fact that reflexivity and transitivity are closure properties

