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CHAPTER 1

PART 4: Finite and Infinite Sets



Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous

if and only if there is a bijection function f : A −→ B,

i.e. there is f is such that

f : A 1−1,onto−→ B

Notation

We write A ∼ B to denote that the sets A and B are
equinumerous and write symbolically

A ∼ B if and only if f : A 1−1,onto−→ B



Equinumerous Relation

Observe that for any set X, the relation ∼
is an equivalence on the set 2X , i.e.

∼ ⊆ 2X × 2X

is reflexive, symmetric and transitive and for any set A

the equivalence class

[A ] = {B ∈ 2X : A ∼ B }

describes for finite sets all sets that have the same

number of elements as the set A



Equinumerous Relation

Observe also that the relation ∼ when considered for

any sets A ,B is not an equivalence relation as its domain

would have to be the set of all sets that does not exist

We extend the notion of ”the same number of elements”

to any sets by introducing the notion of cardinality of sets



Cardinality of Sets

Cardinality definition

We say that A and B have the same cardinality if and only
if they are equipotent, i.e.

A ∼ B

Cardinality notations

If sets A and B have the same cardinality we denote it as:

|A | = |B| or cardA = cardB



Cardinality of Sets

Cardinality

We put the above together in one definition

|A | = |B| if and only if

there is a function f is such that

f : A 1−1,onto−→ B



Finite and Infinite Sets

Definition

A set A is finite if and only if

there is n ∈ N and there is a function

f : {0, 1, 2, ..., n − 1} 1−1,onto−→ A

In this case we have that

|A | = n

and say that the set A has n elements



Finite and Infinite Sets

Definition

A set A is infinite if and only if A is not finite

Here is a theorem that characterizes infinite sets

Dedekind Theorem

A set A is infinite if and only if

there is a proper subset B of the set A such that

|A | = |B|



Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula

f(n) = 2n for all n ∈ N

Obviously
f : N 1−1,onto−→ 2N

By Dedekind Theorem the set N is infinite as the set 2N of

even numbers are a proper subset of natural numbers N



Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula

f(x) = 2x for all x ∈ R

Obviously
f : R 1−1,onto−→ R+

By Dedekind Theorem the set R is infinite as the set

R+ of positive real numbers are a proper subset of

real numbers R



Countably Infinite Sets
Cardinal Number ℵ0

Definition

A set A is called countably infinite if and only if it has the
same cardinality as the set N natural numbers, i.e. when

|A | = |N|

The cardinality of natural numbers N is called

ℵ0 (Aleph zero) and we write

|N| = ℵ0



Countably Infinite Sets

Definition

For any set A,

|A | = ℵ0 if and only if |A | = |N|

Directly from definitions we get the following

Fact 1

A set A is countably infinite if and only if |A | = ℵ0



Countably Infinite Sets

Fact 2

A set A is countably infinite if and only if

all elements of A can be put in a 1-1 sequence

Other name for countably infinite set is

infinitely countable set and we will use both names



Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence

we can ”prune” all repetitive elements to get a 1-1 sequence,

i.e. we prove the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence



Countable and Uncountable Sets

Definition

A set A is countable if and only if A is finite

or countably infinite

Fact 3

A set A is countable if and only if A is finite

or |A | = ℵ0, i.e. |A | = |N|



Countable and Uncountable Sets

Definition

A set A is uncountable if and only if A is not countable

Fact 4

A set A is uncountable if and only if A is infinite and

|A | , ℵ0, i.e. |A | , |N|

Fact 5

A set A is uncountable if and only if its elements

can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4



Countably Infinite Sets

We have proved the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence

We use it now to prove two theorems about countably infinite
sets



Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set

Proof

Let A, B be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

and their union can be listed as 1-1 sequence

A ∪ B : a0, b0, a1, b1, a2, b2, . . . , . . .

In a case not disjoint sets we proceed the same and then

”prune” all repetitive elements to get a 1-1 sequence



Countably Infinite Sets

Product Theorem
Cartesian Product of two countably infinite sets is a
countably infinite set
Proof
Let A, B be two infinitely countable sets
By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

We list their Cartesian Product A × B as an infinite table
(a0, b0), (a0, b1), (a0, b2), (a0, b3), . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . , . . . , . . . ,



Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its

diagonals is finite

(a0, b0), (a0, b1), (a0, b2), (a0, b3), (a0, b4), . . ., . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . ,

We list now elements of A × B one diagonal after the other

Each diagonal is finite, so now we know when one finishes

and other starts



Cartesian Product Theorem Proof

A × B becomes now the following sequence

(a0, b0),

(a1, b0), (a0, b1),

(a2, b0), (a1, b1), (a0, b2),

(a3, b0), (a2, b1), (a1, b2), (a0, b3),

(a3, b1), (a2, b2), (a1, b3), (a0, b4), . . .,

. . . , . . . , . . . , . . . ,

We prove by Mathematical induction that the sequence is well

defined for all n ∈ N and hence that |A × B| = |N|
It ends the proof of the Product Theorem



Union and Cartesian Product Theorems

Observe that the both Union and Product Theorems

can be generalized by Mathematical Induction to the case of

Union or Cartesian Products of any finite number of sets



Uncountable Sets

Theorem 1

The set R of real numbers is uncountable

Proof

We first prove ( homework problem 1.5.11) the following

Lemma 1

The set of all real numbers in the interval [0,1] is
uncountable

Then we use the Lemma 2 below (to be proved it as an

exercise) and the fact that [0, 1] ⊆ R and this ends the proof

Lemma 2 For any sets A,B such that B ⊆ A and B is
uncountable we have that also the set A is uncountable



Special Uncountable Sets

Cardinal Number C - Continuum

We denote by C the cardinality of the set R of real numbers

C is a new cardinal number called continuum and we write

|R| = C

Definition

We say that a set A has cardinality C (continuum)

if and only if |A | = |R|
We write it

|A | = C



Sets of Cardinality C

Example

The set of positive real numbers R+ has cardinality C
because a function f given by the formula

f(x) = 2x for all x ∈ R

is 1-1 function and maps R onto the set R+



Sets of Cardinality C

Theorem 2

The set 2N of all subsets of natural numbers is uncountable

Proof

We prove it in PART 5 (book page 28)

Theorem 3

The set 2N has cardinality C, i.e.

|2N| = C

Proof

The proof of this theorem is not trivial and is not in the scope
of this course



Cantor Theorem

Cantor Theorem (1891)

For any set A ,
|A | < |2A |

where we define

|A | ≤ |B| if and only if A ∼ C and C ⊆ B

|A | < |B| if and only if |A | ≤ |B| and |A | , |B|



Cantor Theorem

Directly from the definition we have the following

Fact 6

If A ⊆ B then |A | ≤ |B|

We know that |N| = ℵ0, C = |R|, and N ⊆ R hence from

Fact 6, ℵ0 ≤ C , but ℵ0 , C, as the set N is countable and

the set R is uncountable

Hence we proved

Fact 7
ℵ0 < C



Uncountable Sets of Cardinality Greater then C

By Cantor Theorem we have that

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < . . .

All sets
P(P(N)), P(P(P(N))) . . .

are uncountable with cardinality greater then C, as by

Theorem 3, Fact 7, and Cantor Theorem we have that

ℵ0 < C < |P(P(N ))| < |P(P(P(N )))| < . . .



Countable and Uncountable Sets

Here are some basic Theorem and Facts

Union 1

Union of two infinitely countable (of cardinality ℵ0) sets is

an infinitely countable set

This means that
ℵ0 + ℵ0 = ℵ0

Union 2

Union of a finite (of cardinality n) set and infinitely countable
( of cardinality ℵ0 ) set is an infinitely countable set

This means that
ℵ0 + n = ℵ0



Countable and Uncountable Sets

Union 3

Union of an infinitely countable (of cardinality ℵ0) set

and a set of the same cardinality as real numbers i.e. of the
cardinality C has the same cardinality as the set of real
numbers

This means that
ℵ0 + C = C

Union 4 Union of two sets of cardinality the same as real
numbers (of cardinality C ) has the same cardinality as the

set of real numbers

This means that
C + C = C



Countable and Uncountable Sets

Product 1

Cartesian Product of two infinitely countable sets is an

infinitely countable set

ℵ0 · ℵ0 = ℵ0

Product 2

Cartesian Product of a non-empty finite set and an

infinitely countable set is an infinitely countable set

n · ℵ0 = ℵ0 for n > 0



Countable and Uncountable Sets

Product 3

Cartesian Product of an infinitely countable set and an
uncountable set of cardinality C has the cardinality C

ℵ0 · C = C

Product 4

Cartesian Product of two uncountable sets of cardinality C
has the cardinality C

C · C = C



Countable and Uncountable Sets

Power 1

The set 2N of all subsets of natural numbers (or of any
countably infinite set) is uncountable set of cardinality C , i.e.
has the same cardinality as the set of real numbers

2ℵ0 = C

Power 2

There are C of all functions that map N into N

Power 3

There are C possible sequences that can be form out of an
infinitely countable set

ℵℵ0
0 = C



Countable and Uncountable Sets

Power 4

The set of all functions that map R into R has the cardinality
CC

Power 5

The set of all real functions of one variable has the same
cardinality as the set of all subsets of real numbers

CC = 2C



Countable and Uncountable Sets

Theorem 4
n < ℵ0 < C

Theorem 5

For any non empty, finite set A , the set A∗ of all finite
sequences formed out of A is countably infinite, i.e

|A∗| = ℵ0

We write it as

If |A | = n, n ≥ 1, then |A∗| = ℵ0



Simple Short Questions

Q1 Set A is uncountable iff A ⊆ R (R is the set of real
numbers)

Q2 Set A is countable iff N ⊆ A where N is the set of
natural numbers

Q3 The set 2N is infinitely countable

Q4 The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is
infinitely countable

Q6 Union of an infinite set and a finite set is an infinitely
countable set



Answers to Simple Short Questions

Q1 Set A is uncountable if and only if A ⊆ R ( R is the
set of real numbers)

NO

The set 2R is uncountable, as |R| < |2R | by Cantor
Theorem, but 2R is not a subset of R

Also for example. N ⊆ R and N is not uncountable



Answers to Simple Short Questions

Q2 Set A is countable if and only if N ⊆ A , where N
is the set of natural numbers

NO

For example, the set A = {∅} is c
¯
ountable as it is finite, but

N * {∅}

In fact, A can be any finite set

or any A can be any infinite set that does not include N,
for example,

A = {{n} : n ∈ N}



Answers to Simple Short Questions

Q3 The set 2N is infinitely countable

NO

|2N| = |R| = C and hence 2N is uncountable

Q4

The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

NO

The set {n ∈ N : n2 + 1 ≤ 15} = {0, 1, 2, 3},
Hence the set A = {{0}, {1}, {2}, {3}} is finite



Answers to Simple Short Questions

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is
infinitely countable (countably infinite)

YES

Observe that the condition n ≤ n2 holds for all n ∈ N,

so the set B = {n : n ≤ n2} is nfinitely countable

The set C = {({n} ∈ 2N : 1 ≤ n ≤ n2} is also

infinitely countable as the function given by a formula

f(n) = {n} is 1− 1 and maps B onto C, i.e |B| = |C|

The set A = C × B is hence infinitely countable as the
Cartesian Product of two infinitely countable sets



CHAPTER 1

PART 5: Fundamental Proof Techniques

1. Counting Functions Theprem

2. The Pigeonhole Principle

3. The Diagonalization Principle



Mathematical Induction Applications
Examples

Counting Functions Theorem

For any finite, non empty sets A, B, there are

|B||A |

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the

number of elements of the set A, i.e. over n ∈ N − {0},
where n = |A |



Counting Functions Theorem Proof

Base case n = 1

We have hence that |A | = 1 and let |B| = m, m ≥ 1, i.e.

A = {a} and B = {b1, ...bm}, m ≥ 1

We have to prove that there are

|B||A | = m1

functions that map A into B

The base case holds as there are exactly m1 = m

functions f : {a} −→ {b1, ...bm} defined as follows

f1(a) = b1, f2(a) = b2, ...., fm(a) = bm



Counting Functions Theorem Proof

Inductive Step
Let A = A1 ∪ {a} for a < A1 and |A1| = n

By inductive assumption, there are mn functions

f : A −→ B = {b1, ...bm}

We group all functions that map A1 as follows

Group 1 contains all functions f1 such that

f1 : A −→ B

and they have the following property

f1(a) = b1, f1(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in

the Group 1



Counting Functions Theorem Proof

Inductive Step
We define now a Group i, for 1 ≤ i ≤ m, m = |B| as follows
Each Group i contains all functions fi such that

fi : A −→ B

and they have the following property

fi(a) = b1, fi(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in each of
the Group i
There are m = |B| groups and each of them has mn

elements, so all together there are

m(mn) = mn+1

functions, what ends the proof



Mathematical Induction Applications
Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and |A | > |B|,
then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N − {0}, where n = |B| and B , ∅
Base case n = 1

Suppose |B| = 1, that is, B = {b}, and |A | > 1.

If f : A −→ {b},
then there are at least two distinct elements a1, a2 ∈ A , such
that f(a1) = f(a2) = {b}
Hence the function f is not one-to one



Pigeonhole Principle Proof

Inductive Assumption

We assume that any f : A −→ B is not one-to one provided

|A | > |B| and |B| ≤ n, where n ≥ 1

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B| and |B| = n + 1

Choose some b ∈ B

Since |B| ≥ 2 we have that B − {b} , ∅



Pigeonhole Principle Proof

Consider the set f−1({b}) ⊆ A . We have two cases

1. |f−1({b})| ≥ 2

Then by definition there are a1, a2 ∈ A ,

such that a1 , a2 and f(a1) = f(a2) = b what proves that

the function f is not one-to one

2. |f−1({b})| ≤ 1

Then we consider a function

g : A − f−1({b}) −→ B − {b}

such that

g(x) = f(x) for all x ∈ A − f−1({b})



Pigeonhole Principle Proof

Observe that the inductive assumption applies to the

function g because |B − {b}| = n for |B| = n + 1 and

|A − f−1({b})| ≥ |A | − 1 for |f−1({b})| ≤ 1

We know that |A | > |B|, so

|A | − 1 > |B| − 1 = n = |B − {b}| and |A − f−1({b})| > |B − {b}|

By the inductive assumption applied to g we get that

g is not one -to one

Hence g(a1) = g(a2) for some distinct
a1, a2 ∈ A − f−1({b}),
but then f(a1) = f(a2) and f is not one -to one either



Pigeonhole Principle Revisited

We now formulate a bit stronger version of the the pigeonhole

principle and present its slightly different proof

Pigeonhole Principle Theorem

If A and B are finite sets and |A | > |B|,
then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N, where n = |B|
Base case n = 0

Assume |B| = 0, that is, B = ∅. Then there is no function
f : A −→ B whatsoever; let alone a one-to one function



Pigeonhole Principle Revisited Proof

Inductive Assumption

Any function f : A −→ B is not one-to one provided

|A | > |B| and |B| ≤ n, n ≥ 0

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B| and |B| = n + 1

We have to show that f is not one-to one under the
Inductive Assumption



Pigeonhole Principle Revisited Proof

We proceed as follows

We choose some element a ∈ A

Since |A | > |B|, and |B| = n + 1 ≥ 1 such choice is possible

Observe now that if there is another element a′ ∈ A such

that a′ , a and f(a) = f(a′), then obviously the function

f is not one-to one and we are done

So, suppose now that the chosen a ∈ A is the only

element mapped by f to f(a)



Pigeonhole Principle Revisited Proof

Consider then the sets A − {a} and B − {f(a)}
and a function

g : A − {a} −→ B − {f(a)}

such that
g(x) = f(x) for all x ∈ A − {a}

Observe that the Inductive Assumption applies to g because

|B − {f(a)}| = n and

|A − {a}| = |A | − 1 > |B| − 1 = |B − {f(a)}|



Pigeonhole Principle Revisited Proof

Hence by the inductive assumption the function

g is not one-to one

Therefore, there are two distinct elements elements of

A − {a} that are mapped by g to the same element of

B − {f(a)}
The function g is, by definition, such that

g(x) = f(x) for all x ∈ A − {a}

so the function f is not one-to one either

This ends the proof



Pigeonhole Principle Application

The Pigeonhole Principle is used in a large variety of proofs
including many in this course

Here is one simple application to be used in later Chapters

Path Definition

Let A , ∅ and R ⊆ A × A be a binary relation in the set A

A path in the binary relation R is a finite sequence

a1, . . . , an such that (ai , ai+1) ∈ R , for i = 1, . . . , n − 1and n ≥ 1

The path a1, . . . , an is said to be from a1 to an

The length of the path a1, . . . , an is n

The path a1, . . . , an is a cycle if ai are all distinct and

also (an, a1) ∈ R



Path THeorem

Path Theorem

Let R be a binary relation on a finite set A and let a, b ∈ A

If there is a path from a to b in R,

then there is a path of length at most |A |
Proof

Suppose that a1, . . . , an is the shortest path from a = a1

to b = an, that is, the path with the smallest length, and

suppose that n > |A |
By Pigeonhole Principle there is an element in A that

repeats on the path, say ai = aj for some 1 ≤ i < j ≤ n

But then a1, . . . , ai , aj+1, . . . , an is a shorter path from a to b,

contradicting a1, . . . , an being the shortest path



The Diagonalization Principle

Here is yet another Principle which justifies a new important

proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be a binary relation on a set A , i.e.

R ⊆ A × A and let D, the diagonal set for R be as follows

D = {a ∈ A : (a, a) < R}

For each a ∈ A , let

Ra = {b ∈ A : (a, b) ∈ R}

Then D is distinct from each Ra



The Diagonalization Principle Applications

Here are two theorems whose proofs are the ”classic”
applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers

The set 2N is uncountable

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is uncountable



Cantor Theorem 2 Proof

Cantor Theorem 2
Let N be the set on natural numbers

The set 2N is uncountable

Proof
We apply proof by contradiction method and the
Diagonalization Principle
Suppose that 2N is countably infinite. That is, we assume
that we can put sets of 2N in a one-to one sequence
{Rn}n∈N such that

2N = {R0, R1, R2, . . . }

We define a binary relation R ⊆ N × N as follows

R = {(i, j) : j ∈ Ri}

This means that for any i, j ∈ N we have that

(i, j) ∈ R if and only if j ∈ Ri



Cantor Theorem 2 Proof

In particular, for any i, j ∈ N we have that

(i, j) < R if and only if j < Ri

and the diagonal set D for R is

D = {n ∈ N : n < Rn}

By definition D ⊆ N, i.e.

D ∈ 2N = {R0, R1, R2, . . . }

and hence
D = Rk for some k ≥ 0



Cantor Theorem 2 Proof

We obtain contradiction by asking whether k ∈ Rk for

D = Rk

We have two cases to consider: k ∈ Rk or k < Rk

c1 Suppose that k ∈ Rk

Since D = {n ∈ N : n < Rn} we have that k < D

But D = Rk and we get k < Rk

Contradiction

c2 Suppose that k < Rk

Since D = {n ∈ N : n < Rn} we have that k ∈ D

But D = Rk and we get k ∈ Rk

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Cantor Theorem 3
The set of real numbers in the interval [0, 1] is uncountable
Proof
We carry the proof by the contradiction method
We assume hat the set of real numbers in the interval
[0, 1] is infinitely countable
This means, by definition , that there is a function f such that

f : N 1−1,onto−→ [01]
Let f be any such function. We write f(n) = dn and denote by

d0, d1, . . . , dn, . . . ,

a sequence of of all elements of [01] defined by f
We will get a contradiction by showing that one can always
find an element d ∈ [01] such that d , dn for all n ∈ N



Cantor Theorem 3 Proof

We use binary representation of real numbers

Hence we assume that all numbers in the interval [01] form a
one to one sequence

d0 = 0.a00 a01 a02 a03 a04 . . . . . .

d1 = 0.a10 a11 a12 a13 a04 . . . . . .

d2 = 0.a20 a21 a22 a23a0 . . . . . .

d3 = 0.a30 a31 a32 a33 a04 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

where all aij ∈ {0, 1}



Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element
d ∈ [01], such that d , dn for all n ∈ N as follows

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

of the sequence d0, d1, . . . , dn, . . . , of binary
representation of all elements of the interval [01] we define

an element bnn , ann as

bnn =

 0 if ann = 1

1 if ann = 0



Cantor Theorem 3 Proof

Given such defined sequence

b00, b11, b22, b33, b44, . . . . . .

We now construct a real number d as

d = b00 b11 b22 b33 b44 . . . . . .

Obviously d ∈ [01] and by the Diagonatization Principle

d , dn for all n ∈ N

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3

It uses, after Cantor the decimal representation of real
numbers

In this case we assume that all numbers in the interval [01]
form a one to one sequence

d0 = 0.a00 a01 a02 a03 a04 . . . . . .

d1 = 0.a10 a11 a12 a13 a04 . . . . . .

d2 = 0.a20 a21 a22 a23a0 . . . . . .

d3 = 0.a30 a31 a32 a33 a04 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

where all aij ∈ {0, 1, 2 . . . 9}



Cantor Theorem 3 Proof

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

we define now an element (this is not the only possible
definition) bnn , ann as

bnn =

 2 if ann = 1

1 if ann , 1

We construct a real number d ∈ [01] as

d = b00 b11 b22 b33 b44 . . . . . .


