
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska



LECTURE 13



CHAPTER 4
TURING MACHINES

1. The definition of Turing machine

2. Computing with Turing machines

3. Extensions of Turing machines



CHAPTER 5
UNDECIDABILITY

1. The Church-Turing thesis

2. Universal Turing machines

3. Undecidable problems about Turing machines



CHAPTER 4
TURING MACHINES

1. The definition of Turing machine

2. Computing with Turing machines

3. Extensions of Turing machines



The definition of Turing machine



Short History

The Turing machine was invented in 1936 by Alan Turing

From Wikipedia:

” . Alan Mathison Turing (23 June 1912 7 June 1954),

was a British mathematician, logician, cryptanalyst, and

computer scientist. He was highly influential in the

development of computer science, giving a formalization of

the concepts of ”algorithm” and ”computation” with the

Turing machine, which can be considered a model of a

general purpose computer. He is widely considered to be the

father of computer ]science and artificial intelligence”



Short History

Automata Theory is a theoretical branch of computer science

developed by mathematicians during the 20th Century

It deals with the logic of computation with respect to simple

machines, referred to as automata

Through automata, computer scientists are able to

understand how machines compute functions and solve

problems and what it means for a function to be defined as

computable or for a question to be described as decidable



Short History

The first description of finite automata was presented

in 1943 by Warren McCulloch and Walter Pitts, two

neurophysiologists

Their theory was generalized to much more powerful

machines by G.H. Mealy and E.F. Moore in separate

papers, published in 1955 - 56

Turing machine is the most general and the most

powerful automata



Short History

Context-free Grammars were developed after Chomsky work

published 1957

From Wikipedia:

” . Avram Noam Chomsky (born December 7, 1928) is an
American linguist, philosopher, cognitive scientist, logician,
political commentator and activist. Sometimes is described as

the ”father of modern linguistics”

Chomsky has spent most of his career at the Massachusetts
Institute of Technology (MIT), where he is currently Professor

Emeritus, and has authored over 100 books. He has been

described as a prominent cultural figure, and was voted the

”world’s top public intellectual” in a 2005 poll.”



The definition of Turing machine

Finite and Pushdown automata can’t be regarded as truly
general models of computers, or computations because they
can’t recognize even such simple languages as

L = {anbncn : n ≥ 0}

Turing machines can recognize those- and more
complicated languages and much more!

Turing machines are not automata, but are similar in their
design



The definition of Turing machine

The main idea of the TMachine is similar to the Finite and
Pushdown automata;

We also have a tape, a finite control module and a reading
head

We assume that the tape has a special symbol . for the
leftmost end of the tape

We can have the Turing Machines models without it



The definition of Turing machine

Turing Machine consists of a Finite Control unit, a tape, and

a read/write head that moves in both directions

The read/write head reads symbols from the tape and is also
used to change symbols on the tape

T Machine can move the head one square at the time

We visit only a finite number of squares during a finite

computation



The definition of Turing machine

Finite Control at each step performs 2 functions dependent
on a current state and a symbol scanned by the reading
head

Function 1: puts the FC unit in a new state

Function 2: performs either;

(a) writes a symbol in the tape square currently scanned,
replacing the one already there; or

(b) moves the read/write head one tape square to the left
or right

The tape has left end, but it extends indefinitely to the right



The definition of Turing machine

To prevent the machine from moving its head off the left end
of the tape we assume that the tape has always a special
symbol . for the leftmost end of the tape

We also assume that all our T Machines are so designed
that, whenever the head reads a symbol . , it immediately
moves to the right

We use the distinct symbols ← and → to denote movement
of the head to the left and the right, respectively

The symbols← and → are not members of any alphabet
we consider

The symbol . is never erased



The definition of Turing machine

Turing Machine is supplied with input by writing the input

string on the tape immediately after the symbol .
The rest of the tape initially contains blank symbols,

denoted by t

T Machine is free to alter its input

It also can write on the unlimited blank portion of the tape to

the right



Turing Machine Mathematical Model

Definition

A Turing Machine is a quintuple

TM = (K , Σ, δ, s, H)

where

K is a finite set of states

Σ as an alphabet

Σ contains a blank symbol t and a left end symbol .
Σ does not contain symbols← and →
s ∈ K is the initial state

H ⊆ K is the set of halting states

We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅



Turing Machine Mathematical Model

Turing Machine components continue

δ is a transition function

δ : (K − H)× Σ −→ K × (Σ ∪ {→, ←})

such that the following conditions hold

1. If δ(q, .) = (p, b) then b =→

2. If δ(q, a) = (p, b) then b , .

Observe that δ is a function, so Turing Machine is always

deterministic



Operation of Turing machine

If q ∈ K − H, a ∈ Σ and

δ(q, a) = (p, b)

then TM in state q scanning a on the tape will enter state p
and



Operation of Turing machine

TM stops only when enters a halting state h ∈ H

Observe that δ is not defined for h ∈ H

TM has also two extra requirements -

the two extra conditions in the definition of δ

Condition 1. If TM sees . (end of the tape) then TM
must move right:

If δ(q, .) = (p, b) then b =→

It means that symbol . is never erased and TM never gets
out of the tape



Operation of Turing machine

Condition 2. of the definition of δ is

If δ(q, a) = (p, b) then b , .

It says that TM never writes on .

Observe that the conditions 1. and 2. guarantee that the

symbol . is well defined and acts a protective barrier



Turing Machine Examples

Example 1

Let M = (K , Σ, δ, s, H) where K = {q0, q1, h}, s = q0,

Σ = {a,t, .}, H = {h} and δ is given by the table



Examples

Operation of M - lets look at δ again

M starts at q0, changes a to t (erases a) and goes to q1

When M in q1 sees a - and goes to q0 - and q0 erases a

When M in q0 sees t - M halts

When M in q1 sees t - M goes to q0 and moves right



Examples

Operation of M
Remark: assignment δ(q1, a) = (q0, a) is irrelevant
because M never can be in state q1 scanning a) if it started at
q0 - THIS is like a TRAP State; δ must be a function
Here a computation of M



Turing Machine Examples

Example 2
Let M = (K , Σ, δ, s, H) where K = {q0, h}, s = q0,

Σ = {a,t, .}, H = {h} and δ is given by the table

If every tape square from the head position to the left contains
an a the M will go to the left end of the tape and then M

indefinitely goes between the left end and the square to

its right

Operation of M may never stop



Formal Definition

Formal definition of operation of Turing Machine is similar to
the one for FA and PD automata
We define first a notion of a configuration
Configuration of M is any element

(q, .w, u) ∈ K × .Σ∗ × (Σ∗(Σ− {t}) ∪ {e})

Picture



Configuration

Configuration/not Configuration examples

Picture



Configuration

Configuration shorthand notation

Picture

Halted Configuration is a configuration whose state
components is in H



Transition Relation

Given a set S of all configurations of M

S ⊆ K × .Σ∗ × (Σ∗(Σ− {t}) ∪ {e})

The transition relation acts between two configurations
and hence `M is a certain binary relation defined on S × S,
i.e.

`M ⊆ (K × .Σ∗ × (Σ∗(Σ− {t}) ∪ {e}))2

We write
C1 `M C2

and say C1 YIELDS C2

Formal definition follows



Transition Relation

Definition of C1 `M C2

and either



Transition Relation

and either



Computation by TM

Given a transition relation `M

We denote as usual, its reflexive, transitive closure is denoted
by `M

∗ and
C1 `M

∗Cn

is a computation of the length n in M from C1 to Cn

By definition of `M
∗ we have that

C1 `M
∗Cn

if and only of

C1 `M C2 `M . . . `MCn



Computation by TM

Let M be the Turing Machine from Example 1 that scans
the tape to the right changing a’s to t until finds a blank t
and then halts
Here is a computation of M of lengths 10



A Notation for Turing Machines



A Notation for Turing Machines

The Turing machines we have seen so far are extremely

simple but their transition function is already complex and

difficult to understand and interpret

We shall now adopt a graphical representation for

Turing machines similar to the diagrams for finite automata

However, in this case the diagrams’ nodes will be

not states, but themselves Turing machines



A Notation for Turing Machines

We use a hierarchical notation, in which more and more
complex machines are built from simpler materials

To this end we define a very simple repertoire of basic

machines, together with rules for combining machines

We will be building machines by combining the basic

machines, and then we shall further combine the combined

machines to obtain more complex machines, and so on



Basic Machines

Basic Machines

We fix the alphabet Σ and define the symbol-writing

and head moving machines as follows

For each a ∈ (Σ ∪ {→, ←})− {.} we define a TM

Ma = ({s, h}, Σ, δ, s, {h})

where for each b ∈ Σ− {.}

δ(s, b) = (h, a) and as always, δ(s, .) = (s,→)



Basic Machines

Given the TM machine

Ma = ({s, h}, Σ, δ, s, {h})

the only thing this machine does is to perform action of

writing a symbol a if a ∈ Σ

and Ma is called a symbol-writing machine,

moving to the direction indicated by a if a ∈ {→, ←}
and Ma is called a head-moving machine,

and then Ma immediately halts

If scanned symbol is a .,

then the machine will dutifully move to the right



Basic Machines

Let Ma be a symbol -writing or head-moving machine

We adopt the following notation:

1. If a ∈ Σ , we write

a instead of Ma

for a-writing machine Ma

2. If a ∈ {→, ←} , we write

L and R instead of M← and M→, respectively



The Rules for Combining Machines

The Rules for Combining Machines

We combine the machines treating the individual machines

like the states of finite automata

The machines may be connected to each other in the way

that the states of finite automaton are connected together

But the connection from one machine to the other does not

happen until the first machine halts

The other machine is then started from the initial state with

the tape and head position as they were left by the first

machine



Turing Machine Diagram

Given Turing Machines M1,M2,M3

Here us a diagram of a machine M = (K , Σ, δ, s, H)
composed of M1,M2,M3



Turing Machine Diagrams

Given a diagram of of a machine M = (K , Σ, δ, H)

M starts at the initial state of M1; operates as M1 until M1

halts; then

if the currently scanned symbol is an a initiates M2, and

operates as M2; otherwise,

if the currently scanned symbol is a b, then initiates M3, and

operates as M3



Turing Machine Diagrams

Here is a diagram of a machine M consisting of

two copies of the basic machine R = M→

M moves its head right one square;

if that square contains an a, or a b, or a ., or a t,

it moves its head one square to the right



Diagrams of Turing Machines

It is convenient to represent the machine M consisting of

two copies of the R machine as follows

If an arrow is labelled by all symbols of the alphabet Σ of the

machines, then the labels can be omitted and we denote

the diagram as

R −→ R or under this convention, as RR or even R2



Diagrams of Turing Machines

Here are some more convenient diagrams

Let a ∈ Σ be any symbol. We use a symbol a to say

”any symbol except a ”

The diagram

represents a machine that scans the tape to the right until it

finds a blank t. We denote it by R t



Diagrams of Turing Machines

Let a ∈ Σ be any symbol

We write a symbol a , t to denote a statement

”any symbol a other than t ”

The diagram

is another representation of the machine R t that scans the

tape to the right until it finds a blank t



Diagrams of Turing Machines

The diagram

depicts a machine that scans to the right until it finds a

nonblank square, then copies the symbol in that square onto

the square immediately to the left of where it was found



Some Simple Special Machines

Here are machines to find marked or unmarked squares

The diagram

depicts a machine R t that finds the first blank square to
the right of the currently scanned square



Some Simple Special Machines

Here are machines to find marked or unmarked squares

The diagram

depicts a machine L t that scans the tape to the left until it

finds a blank t



Some Simple Special Machines

Here are machines to find marked or unmarked squares

The diagram

depicts a machine R t that finds the first NONBLANK

square to the right of the currently scanned square



Some Simple Special Machines

Here are machines to find marked or unmarked squares

The diagram

depicts a machine L t that finds the first NONBLANK

square to the left of the currently scanned square



CHAPTER 4
TURING MACHINES

1. The definition of Turing machine

2. Computing with Turing machines

3. Extensions of Turing machines



Computing with Turing machines



Computing with Turing machines

We introduced Turing Machines with the goal that they
outperform, as language acceptors, all of automata we
introduced and examined

To be able discuss this goal we have to define (and examine)
how they are to be used to perform a task of language
recognition

In order to do so we need to fix some conventions for use of
Turing machines



Computing with Turing machines

We adopt the following policy for presenting input to

Turing machines

1. The input string, with no blank symbols in it, is written to

the right of the leftmost symbol ., with a blank on its left,

and blanks to its right

2. The head is positioned at the tape square containing the

blank between the . and the input

3. Machine starts operation in its initial state



Computing with Turing machines

Given a Turing machine

M = (K , Σ, δ, s, H)

and let
w ∈ (Σ− {t, .)∗}

The initial configuration of M on input word w is

(s, .tw)



Computing with Turing machines

Consider a Turing Machine M = (K , Σ, δ, s, H)

for H = {y, n} where y denotes accepting configuration

n denotes rejecting configuration

M accepts a word w ∈ (Σ− {t, .})∗ if and only if

the initial configuration (s, . tw) on input word w yields an

accepting configuration

M rejects a word w ∈ (Σ− {t, .})∗ if and only if

the initial configuration (s, . tw) on input word w yields an

rejecting configuration



Computing with Turing machines

Given a Turing machine M = (K , Σ, δ, s, H) for
H = {y, n}
The alphabet

Σ0 ⊆ Σ− {t, . }

is called an input alphabet of M

By fixing Σ0 to be subset of Σ− {t, . } we allow our

Turing machines to use extra symbols during their

computation, besides those appearing in their inputs



Recursive Languages

Given an input alphabet Σ0 ⊆ Σ− {t, . } of M

Definition

M decides a language L ⊆ Σ0
∗ if for any word w ∈ L

the following condition holds

If w ∈ L then M accepts M decides w;

and if w < L then M rejects w

Definition

The language L ⊆ Σ0
∗ is recursive

if there is a Turing machine M that decides it



Recursive Languages

Observe that M decides a language if, when started with
input w, it always halts, and does so in a halt state that is a
correct response to the input:

y if w ∈ L ,

n if w < L

Notice that no guarantees sre given about what happens

if the input to M contains blank or the left end symbol



Recursive Languages

Theorem
The not context-free language

L = {anbncn : n ≥ 0}

is recursive
Proof Here is a diagram of a Turing machine M
that decides L



Recursive Functions



Recursive Functions

Let f be any function from Σ0
∗ to Σ0

∗

Definition

A Turing machine M computes function f if for all words

w ∈ Σ0
∗ it eventually halts on input w,

and when it does halt, its tape contains the string

. t f(w)

Definition

A function f is called recursive, if there is a Turing machine

M that computes f



Recursively Enumerable Languages

Definition

A Turing machine M semidecides a language L ⊆ Σ0
∗

if and only if for any word w ∈ Σ0
∗ the following is true:

w ∈ L if and only if M halts on input w

Definition

A language L ⊆ Σ0
∗ is recursively enumerable if there is a

Turing machine M that semidecides it



Recursively Enumerable Languages

Observe that a Turing machine M that semidecides a

language L when presented with input w ∈ L ,

is required to halt eventually

We do not care precisely which halting configuration

it reaches, as long as it does eventually arrive at

a halting configuration



Recursively Enumerable Languages

Theorem
The language

L = {w ∈ {a.b}∗ : w contains at least one a }

recursively enumerable
Proof L is semidecided by M defined by the following
diagram



Recursively Enumerable Languages

The machine M

when started in initial configuration on input w, i.e. in

configuration (s, .tw) for some w ∈ {a.b}∗ simply scans

right until an a is found and then halts

If no a is found, the machine goes on forever onto the

blanks that follow its input, never halting



Two important Theorems

Theorem 1

If a language is recursive then it is recursively enumerable

Theorem 2

If L ⊆ Σ0
∗ is a recursive language, then its complement

Σ0
∗ − L is also recursive



CHAPTER 4
TURING MACHINES

1. The definition of Turing machine

2. Computing with Turing machines

3. Extensions of Turing machines



Extensions of Turing machines

Multiple tapes

ORIGINAL Turing Machine 1936 : two way infinite tape

Two dimensional tape

Random access machines

Non-deterministic machines

Theorem

All models of Turing Machine are computationally equivalent
to the standard Turing machine M



ChurchTuring Thesis

A Turing machine that is able to simulate any other Turing

machine is called a universal Turing machine UTM, or simply

a universal machine

A more mathematically-oriented definition with a similar

”universal” nature was introduced by Alonzo Church

Church work on lambda calculus intertwined with Turing’s in

a statement known in the a formal theory of computation as

ChurchTuring Thesis



ChurchTuring Thesis

The ChurchTuring thesis states that Turing machines indeed

capture the informal notion of effective method in logic and

mathematics, and provide a precise definition of an

algorithm or ”mechanical procedure”

Studying the abstract properties of the Turing machines

yields many insights into computer science and

complexity theory


