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Context-free Grammars

Finite Automata are formal language recognizers- they are
devises that accept valid strings

Context-free Grammars are a certain type of formal language
generators- they are devises that produce valid strings

Such a devise begins, when given a start symbol, to
construct a string

Its operation is not completely determined from he beginning
but is nevertheless limited by a finite set of rules

The process stops, and the devise outputs a completed
string

The language defined by then devise is the set of all strings it
can produce



Context-free Grammar Definition

Definition
A Context-Free Grammar is a quadruple

G=(V,%, R, S)

where

V is an alphabet

> CV isasetof terminals

V — ¥ is the set of honterminals
R is afinite set of rules

RC(V—X)x V*

S € V-1 isthe start symbol



Context-free Grammar Definition

Given a context-free grammar
G=(V, %L, R, S)

Definition
Forany u,v € V*, we define a one step derivation

u=yv
G

of v from u as follows

=g ifandonlyif thereare A, x,y,v' € V* such that
1. AeV-%

2. u=xAy and v =xVy

2. A — v forcertain re R



Language of Context-free Grammar

Definition of the language L(G) generated by G
L(G)={wex*:S ? w}

where =/ s a transitive, reflexive closure of =¢
Given a derivationof w € X in G

S=>w
G
We write is in detail (by definition of =, ) as
S=w = w =>...>w for eV, weckX
G G G G
or in a simpler form when G is known as

S=w = w = ...=>w



Context-free Languages

Definition
A language L is a context-free language if and only if there is
a context-free grammar G such that

L =L(G)



Context-free and Regular Languages

Observe that we also proved that the language

L ={a"b": n> 0} is not regular

Denote by RL the class of all regular languages and by
CFL the class of all contex-free languages

Hence we have

Fact2 RL # CFL

Our next GOAL will be to prove the following

Theorem

The the class o f all regular languages is a proper subset of
the class of all contex-free languages, i.e.

RL c CFL



Exercises

Exercise 1

Show that the regular language L ={a*: ac X} is
context-free

Proof By definition of context-free language we have to
construct a CF grammar G such that

L=L(G) ie L(G)={a": aeX}

Here is the grammar G =(V, L, R, S)
for V={S,a}, X ={a} and
R={S — aS, S—e}

We write rules of R in a shorter way as

R={S — aS|e}



Exercises

Here is a derivation in G:
S = aS = aaS = aaaS = aaae

and we have that
aaaa € L(G)

We prove, by induction on the length of derivation that
L(G)={a": aecX}

Exercise 2
Show that the NOT regular language

L={wwf: we{ab}}

is context-free



Exercises

We construct a context-free grammar G such that
L(G)={ww": we{abl}

as follows
G=(V,L,R,S)

where V ={a,b,S}, ¥={a,b}
R ={S — aSa |bSb | e}

Derivation example:
S = aSa = abSab = abbSbba =- abbbba

We prove, by induction on the length of derivation that
ww? € L(G) forany w € ©*



Exercises
Remark
The set of rules
R={S — aSa|aSb|c}
defines a grammar G with the language
L(G) = {wew" : we {a,b}*}

Exercise 3
Show that the NOT regular language

L={we{ab}: w=wf}

is context-free



Exercises

We construct a context-free grammar G such that
L(G)={we {a,b}*: w=w"}

as follows
G=(V,L,R,S)

where V ={a,b,S}, ¥={a,b}
R={S —aSa|bSb|a|b]|e}
Derivation example:
S = aSa = abSba = ababa
We check:

(ababa)® = ((ab)a(ba))? = (ba)?af(ab)? = ababa



Regular Grammars
Definition
A context-free grammar
G=(V, %L, R, S)
is called regular, or right-linear if and only if
RC(V-X)xI*((V-X)U{e})

That is, a regular grammar is a context-free grammar such
that the right-hand side of every rule contains at most one
nonterminal, which if present, must be the last symbol in the
string

The rules must have a form

A— wB, A— w forany AL BeV-%, weXl”

Remark that we didn’t say A # B!



Regular and Context-free Languages

Exercise 4
Given a regular grammar G = (V, X, R, S), where
V={ab,S,A}, x={a,b}

R={S—aS|A

e, A— abAa|b}
1 Construct a finite automaton M, such that
L(G) = L(M)

Solution
We construct a non-deterministic finite automaton

M= (K, X, A, s, F)
as follows:
K=(V-X)U{f}, 2=%X,s=8, F={f}
A =1{(S,a,S),(S,e,A),(S,e,f),(A,ab,A),(A,a,f),(A,b,f)}



Regular and Context-free Languages

2. Write a computation of M that leads to the acceptance of
the string aaaababa

Compare it with a derivation of the same string in G
Solution
The accepting computation of M is:

(S, aaaababa) t (S, aaababa) -y (S, aababa) -y (S, ababa)

Fum (A, ababa) Fy (A, aba) by (A, a) Fum (f, e)

Corresponding derivation in G is:
S = aS = aaS = gaaS = aaaA = aaaabA

= aaaababA = aaaababa



Regular and Context-free Languages

We are going to prove the following theorem that establishes
the relationship between the Regular Languages and Regular
Grammars

L-G Theorem

Language L is regular if and only if there exists a regular
grammar G such that L =L(G)

By definition, any regular grammar is context free and hence
generates a context-free language and we get that

R -CF Theorem

The the class RL of all regular languages is a proper subset
of the class CFL of all context-free languages, i.e.

RL C CFL



Proof of L-G Theorem

L-G Theorem
Language L is regular if and only if there exists a regular
grammar G such that

L =L(G)

Proof part 1
Suppose that L is regular; then L is accepted by a
deterministic finite automaton

M= (K, ¥, 6 s, F)
We construct a regular grammar G as follows
G=(V, %L, R,S)
forV=XUK, S=s
R={q — ap: d(qg.a)=pt U {g » e: geF}



Proof of L-G Theorem

We need now to show that L(M) = L(G)

Observe that the rules of G are designed to mimic exactly
the moves of M

Forany o1,...,0n€ X and po,...,pn € K

(p0,0'1s---,0'n) |_M(p170'23’0'n)|_M|_M(pn’e)
if and only if
= = >
Po e 01P1 60102}02 e 01072 O nPn

This is because

6(g.a)=p ifandonlyif g — ap



Proof of L-G Theorem

We prove now that L(M) C L(G)
Suppose that w € L(M)
Then for some p € F

(s, w) Fm” (p. e)

Then s="wp, andsince isalsoarulep — eforp e Fin
G we get
S22 w
G
andso w e L(G)



Proof of L-G Theorem

We prove now that L(G) C L(M)
Suppose that w € L(G)
Then
S = w thatis s = w
G G

The rule used at the last step of the derivation must have
been of the form

p — e forsome peF

and so

S = wp = w
G G

But then
(s. W) Fur* (p. )
andso w e L(M) and

L(M) = L(G)



Proof of L-G Theorem
Proof part 2
Let now G be any regular grammar
G=(V, %L, R, S)

We define a nondeterministic automaton M such that

as follows
M= (K, X, A, s, F)

K=(V—-X)u{f} wherefisanew element

s=8, F={f}



Proof of L-G Theorem

The set A of transitions is
A={(A,w,B): A->wBeR;, AABeV-%, wekl"}

U{(A,w,f): A->weR, ABeV-%, wex"}

Once again, derivations are mimicked by the moves, i.e, for
any

A,...,ApeV—-% wy,..wel"
A1 =G W1A2 =G =G W1...Wn,1An:>G Wi...Wp

if and only if
(A, wi...wn) Fum (Ao, Wa ... Wp) By oo B (An,wh) B (. e)



Exercises

Exercise 1

Given M defined by the diagram below, construct a regular
grammar G, such that L(M) = L(G)

oL

We follow the proof of L-G Theorem and we “read” the rules
of G as follows

R={q — aqi |bgi, g1 — aqgi|bgi, qo — e, q1 — e}

We re-write the rules using a standard notation for
nonterminals as

R={S — aA|bA, A — aA|bA, S — e, A — e}



Exercises

Exercise 2

Given M defined by the diagram below, construct a regular
grammar G, such that L(M) = L(G)

We "read” the rules of G as follows

R={q — aqi |bgz, g1 — aqi |bgz|e, g2 — aqgz|bqo | e}

We re-write the rules using a standard notation for
nonterminals as

R={S — aA|bB, A — aal|bB|e, B — aB |bS|e}



Exercises

Exercise 3

Given a grammar G defined by the set of rules, construct a
finite automata G, such that L(M) = L(G)

Here is a picture depicting the pattern of such constructions

u]
o)

I

"
it
)
»
Q



Pushdown Automata PDA

Computational Model of Pushdown Automata PDA

C1: Automata “remembers” what it has already read by
putting it, one symbol at the time on stack, or pushdown
store

C2: It always puts symbols on the top of the stack

C3: symbols could be removed from the top of the stack and
can be checked against the input

C4: Word is accepted when it has been read, stack is empty
and automaton is in a final state



Pushdown Automata PDA

Pushdown Automata for the context-free language
L=={wwf: we{a,b}*}

Pickrt

Idea: Automata will read abbab putting its reverse babba
on the stack from down -to- up

It will stop nondeterministically and

start to compare the stack content with the rest of the input
removing content of the stack

[m] = =




PD Automata and CF Grammars

Goal

Our goal now it to prove a theorem similar to the theorem for
finite automata establishing equivalence of regular languages
and finite automata, i.e. we want now to prove the following

Main Theorem

The class of languages accepted by Pushdown Automata is
exactly the class of Context-free Languages

It means that we want to find best way to define Pushdown
Automata in order to achieve this goal

Definition Idea

We have constructed, for any regular grammar G a finite
automaton M such that L(G) = L(M) by transforming any rule
A — wB into a corresponding transition (A,w,B) € A of
M that said: ”in state A read w and move to B”



Pushdown Automata PDA

We extend this idea to non-regular rules and pushdown
automata as follows

Given a context-free grammar G and a rule
A—aBb for a,be¥, AL BeV-%

We now translate it to a corresponding transition (to be
defined formally) of a PD automata M that says:

M in state A reads a, puts b on stack and goes to state B

Later, the symbols on the stack can be removed and
checked agains the input when needed

Word is accepted when it has been read, stack is empty and
automaton is in a final state



PDA - Mathematical Model

Definition
A Pushdown Automata is a sextuple

M= (K, 5, T, A s, F)

where

K is a finite set of states

> asan alphabet of input symbols
[ as an alphabet of stack symbols
s € K is the initial state

F C K isthe set of final states

A is a transition relation

A C (KxX"xI)x (KxTI")

A is a finite set

We usually use different symbols for K, %, i.e. we have that
KN =1



Transition Relation

Given PDA
M=(K, L, T, A, s, F)
We denote elements of stack alphabet by «, 5, vy, with
indices if necessary
Consider
A C (KxX"xI)x (KxT7)

and let an element

((p, u, B), (g, ¥)) € A

This means that the automaton M in the state p with 3 to the
top of the stack,

reads u from the input,

replaces f by 7y on the top of the stack, and

goes to state q

Pushdown automata is nondeterministic; A is nota
function



Special Transitions

Given a transition

((p, u, B), (g, ¥)) € A

Here are some spacial cases, i.e some special transitions
that operate on the stack

Push a - adds symbol a to the top of the stack
((p, u. e), (q. a)) pusha

Pop a - removes symbol a from the top of the stack

((p, u, a), (g. €)) pop a



Configuration and Transition

In order to define a notion of computation of M on an input
string w € ©* we introduce, as always, a notion of a
configuration and transition relation

A configuration is any tuple
(qw,y) e Kx X" xT*

where q € K represents a current state of Mand w € > is
unread part of the input, and y is a content of the stack read
top-down

The transition relation acts between two configurations
and hence ), is a certain binary relation defined on

K x X" xT* ie.

Fu € (K x X* x )2

Formal definition follows



Transition Relation

Given
M=(K, X, T, A, s, F))

Transition relation
Definition
Forany p, g € K, uxex*, a,pf, vy

(p’ ux, BQ) '_M (q’ X, ’)/(l’)
if and only if

((p, u, B), (g, v)) € A



Language L(M)

We denote as usual, the reflexive, transitive closure of Fy
denoted by " and define

Definition
LIM)y={weX*: (s,w, e)Fu*(p, e, ,e) forcertain p € F}

M accepts w € X" ifand only if w € L(M)
In plain English:

(s, w, e) means:

start with w and empty stack

(p, e, e) for certain p € F means:

finish in a final state after reading w and emptying all of the
stack



Pushdown and Finite Automata)

Theorem
The class FA of finite automata is a proper subset of the
class PDA of pushdown automata, i.e.

FA C PDA

Proof

We show that every FA automaton is a PDA automaton that
operates on an empty stack

Given a FA automaton M= (K, %, 6, s, F)

We construct PDA automaton

M=(K, X, T, A, s, F))
where '=( and
={((p. u. €), (q.€): (p,u q)eA}
Obviously, L(M)=L(M’) and hence we proved that
M~ M



State Diagrams for Pushdown Automata

Diagram

((p. u. e). (q.a)) e A pusha
M in state p
1. reads u
2. pushes a on the top of the stack
3. goestothe state g



State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state
In state p

1. reads u

2. pushes a on the top of the stack
3. goestothe state p



State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state, reading nothing
In state p

1. reads e

2. pushes a on the top of the stack

3. goes to the state p OR goes to the stDate q



State Diagrams for Pushdown Automata

Diagram

((p, u, a). (g. €)) e A pop a

M in state p

1. reads u

2. pops a from the top of the stack
3. goestothe state g



State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state
In state p

1. reads u

2. pops a from the top of the stack
3. goestothe state p



State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state, reading nothing
In state p

1. reads e

2. pushes a on the top of the stack

3. goes to the state p



State Diagrams for Pushdown Automata
Diagram of PD M’

that imitates the FA colorred M

Theorem: Any FA automaton is a PD automaton



Exercise
Exercise

Diagram of M

Write components of M and find its language L(M)

[m]

=



Exercise

Exercise Solution
Diagram of M

A components are

((q0. a, €), (qo. a)) - push a

((q0. b, €), (qo, b)) -pushb

((qo. c. e), (g1, e)) - switches to final g; when sees ¢
((g1, a, a), (g1, e)) - compares and pop a

(g1, b, b), ( ) - compares and pop b

L(M) = {wew® : we {a,b}*}



CHAPTER 3
PART 3: Pushdown automata and context -free grammars



Main Theorem

We are going to show now that the PD automaton is exactly
what is needed to accept arbitrary context-free languages, i.e.
we are going to prove the following

Main Theorem

The class of languages accepted by PD automata is exactly
the class of context-free languages

Proof
We break the proof into two parts
Lemma 1

Each context free language is accepted by some PD
automaton

Lemma 2

If a language is accepted by a PD automaton, itis a context
free language



Proof of Lemma 1

We prove here only first Lemma; the poof of the second one is
very complicated and we haven’t yet covered all material
needed to carry it on.

It is included in the Book on pages 139 - 142
Lemma 1

Each context free language is accepted by some PD
automaton

Proof

Let G=(V, X, R, S) be a context-free grammar; we must
construct a PD automaton M, such that L(G) = L(M)

M we construct has only two states p and g and
M remains in state g after its first move

M uses V, the set of grammar terminals and nonterminals as
its stack alphabet



Proof of Lemma 1

Given context-free grammar the G = (V, &, R, S)
We define corresponding PD automaton as

M= (K={p.q}, &, T =V, A, p, {q})

where A contains the following transitions

1. ((p.e e) (g S))

2. ((g,e, A),(q, x)) -foreachrule A — xinR
3. ((9,c, ¢),(q, €) -foreachc € &

The PD automaton M starts operation by pushing grammar
start symbol S on empty its initially store and entering state g
(transition 1.)



Proof of Lemma 1

Remaining A transitions are

1. ((p.e, ) (q 9))

2. ((g,e, A),(q, x)) -foreachrule A — xinR
3. ((g, 0, 0), (g, e))-foreacho € ©

M on each subsequent step

either replaces the topmost nonterminal symbol A on the
stack by the right side x of some rule A — x in R (transition of
type 2.)

or M pops the topmost symbol of the stock provided it
matches the input symbol (transition of type 3.)



Proof of Lemma 1

The transitions of M are designed so that the stack during the
accepting computation mimics a leftmost grammar
derivation of the input string

M intermittently carries out a step of such derivation on the
stack and

between such steps it pops from the stack any terminal
symbols that match the symbols read from the input

Popping the terminals exposes in turn the leftmost
nonterminal, so that the process can continue until the input
is read and the stack is empty

All these steps are carried while M is in the final state, hence
we get that the input word is accepted

We conduct the formal proof on induction of the length of
derivation and computation



Example
Example of the construction of the proof of Lemma 1
Let G be such that
L(G) = {wew" . w e {a,b}*}

i.e. Gis as follows

G=(V,%L R,S)
where V ={a,b,c,S}, ¥ =1{a,b,c}

R ={S — aSa |bSb | c}

The corresponding PD automaton is
M= (K={p.q}, ¥ ={a,b,c}, [ ={a,b,c.S}, A, p, {q})

with A corresponding to rules of G , i.e.



Example

A transitions corresponding to rules of G are




Example

The word abbcbba € L(M)

Here is a computations accepting abbcbba




Languages that are and are not Context- free



Closure Properties

Closure Theorem 1

The context-free languages are closed under union,
concatenation, and Kleene star

Closure Theorem 2

The context-free languages are not closed under intersection
and complementation

Closure Theorem 3

The intersection of a contexi-free language with a regular
language is a context-free language



Pumping Lemma

Pumping Lemma

Let G be a context-free grammar

Then there is a number K, depending on G, such that
any word w € L(G) of length greater than K

can be re-written as

w=uvxyz for ve or y+e
and forany n>0

uvxy"z € L(G)



Not Context-free Languages

We use the Pumping Lemma to prove the following
Theorem 4

The language
L={a"b"c": n=>0}
is NOT context-free

Theorem 5
The following languages are NOT context-free

Ly ={a'ba't/: ij>0}
L, ={aP: pisprime}
ls={a": n>0}

Ly = {www: we{a,b}*}



Power of Pumping Lemma

We use the Pumping Lemma to prove that MANY languages
are NOT context-free

Unfortunately, there are very simple non-context-free
languages which cannot be shown not to be context-free by
a direct application of the Pumping Lemma

For example, we use a theorem called Parikh Theorem to
show that

L ={a™b": either m> n, or mis prime and n > m
p

is NOT context-free and we can’t prove it by the use of
Pumping Lemma

We also use Parikh Theorem to show the following
interesting property of contex-free languages

Theorem 6

Every contex-free language over a one-symbol alphabet is
regular



Context-free/ NOT Context-free Languages
Exercise
Prove that the language
L={ww: we{ab}"}

is NOT context-free
Hint
We know that

Ly ={a'ba't/: ij>0}

is NOT context-free



Context-free/ NOT Context-free Languages

Solution
Assume that
L={ww: we{ab}"}
is context-free; then the language
L n a*b*a*b*
is context-free by

Theorem 3

The intersection of a context-free language with a regular
language is a context-free language

But
{ww: we{ab}*}na*b*a*b* ={a'bla't/: i,j>0}

which we know to be NOT context-free
Contradiction



Some YES/NO questions

Qa1

The set of terminals in a context free grammar G is a subset
of the alphabet of G

Q2
L(G)={weV: S="gw}
Q3

Alanguage L C >* is context-free if and only if there is a
grammar G, such that L = L(G)

Q4
Any regular language is context-free



ANSWERS to YES/NO questions

Q1

The set of terminals in a context free grammar G is a subset
of the alphabet of G

YES

By definition : >~ C V for ¥ terminals and V alphabet of any
context free grammar G

Q2

L(G)={weV: S="gw}
NO Mustbethatw € ©*
Q3

Alanguage L C ¥* is context-free if and only if there is a
grammar G, such that L = L(G)

NO It os true only when G is a context -free grammar



ANSWERS to YES/NO questions

Q3

Alanguage L C ¥* is context-free if and only if there is a
grammar G, such that L = L(G)

NO

It is true only when G is a context -free grammar
Q4

Any regular language is context-free

YES

Regular languages are generated by regular grammars, that
are also context-free



Some YES/NO questions

Q5

The language L = {w € {a,b}* : w = w"'} is context-free
Q6

Any regular language is accepted by a pushdown automaton
Q7

Context-free languages are closed under intersection

Q8

The union of a context-free language and regular language
is a context-free language

Q9

Every subset of a regular language is a language

Q10

Any regular language is accepted by some PD automata



ANSWERS to YES/NO questions

Q5

The language L = {w € {a,b}* : w = w'} is context-free
YES

G with the rules:

S — aSal|bSb|alb|e

issuchthat L = L(G)

Q6

Any regular language is accepted by a pushdown automaton
YES

By FA Main Theorem, any regular language is accepted by a
certain FA, and any finite automata is a pushdown

automata operating on an empty stock



ANSWERS to YES/NO questions

Q7

Context-free languages are closed under intersection
NO

Take L1, Lo such that

Ly ={a"b"c¢™: n,m>0}and L, ={a™b"c": n,m > 0}
Both L, L, are CF languages and we get
LinLy={a"b"c": n>0}

that is not CF



ANSWERS to YES/NO questions

Q8

The union of a context-free language and regular language
is a context-free language

YES Regular language is also a context free language and
context free languages are closed under union

Q9

Every subset of a regular language is a language

YES A subset of a setis a set

Q10

Any regular language is accepted by some PD automata
YES

Any regular language is accepted by a FA and a finite
automaton is a PD automaton (that never operates on the
stock)



