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LECTURE 11



CHAPTER 3
CONTEXT-FREE LANGUAGES

1. Context-free Grammars

2. Parse Trees

3. Pushdown Automata

4. Pushdown automata and context -free grammars
5. Languages that are not context- free



CHAPTER 3
Review Exercises



Exercises
Exercise 1
Prove that the language
L={a"b": m>n}

is context- free
We construct a grammar G such that

L(G)={a™": m>n}

as follows
G=(V,L,R,S)

where V ={a,b,S}, ¥={a,b}
R={S — aS|aSb| e}
Derivation examples
S = aS = aaS = aaaSb = aaab

S = aSb = aaSbb = aaaSbbb = aaabbb



Exercises

Exercise 2
Construct a grammar G such that

L(G)={a"b": m>n}
We adopt rules
R={S — aS|aSb| a}

Exercise 3
Prove that
L={a"b": m<n}
is context- free
Observe that
L={a"b": n>0}{b}"
and hence L is context- free as regular language is

context-free and context-free languages are closed under
concatenation



Exercises

Exercise 4
Prove that
L={a™": m=+n}
is context- free
Observe that

{a™": m#n}={a"™®": m>n}u{a”": m<n}

and hence L is context- free as context-free languages are
closed under union and we have just proved that both union
components are context-free



Exercises

Exercise 5
We proved that

The context-free languages are not closed under
complementation

We know that
L={a"p": n>0}
is context- free
Prove that the complement of L is also context- free
Observe that

Y*—L={a"b": m#ntULrtar*br*ar* UL *br*ar bL"

and hence >~* — L is context- free as union of context-free
languages



Exercises

Exercise 6
Let L be a context-free language and let R be regular
Prove that L — R is context-free
What about R — L?
Observe that
L-—R=LNn(X-R)
and regular languages are closed under intersection and
Theorem 3

The intersection of a context-free language with a regular
language is a context-free language
R — L does not need to be CF
Take R=1%"
R-—L=Y"-1L

and CF languages are not closed under complementation



Exercises
Exercise 7

Construct a PD automaton M such that

L(M) = {a"b?"
The diagram of M is

n>0}

The components of M are

[m]

K={s,f}, ¥={a,b}, I ={a}, s, F={f}

=



Exercises

The set A of transitions is

A ={((s.a.e).(s,bb)), ((s.e.e).(f.e)). ((f.b,b),(f.e))}
Show that ab ¢ L(M)

M is non-deterministic, so we have to consider all possible
computations M starting at the word ab

Here they are:

1.




Exercises
The set A of transitions is

There are only two more "switches”
2. and 3.

A ={((s,a,e).(s,bb)), ((s.e e)(f.e)). ((f.b,b) (fe))}




Exercises
The set A of transitions is

A ={((s a e) (s,bb)), ((s.e e)(f.e)). ((f,b,b)(f.e))}
Show that aabbbb € L(M)

Here is a computation of M accepting aabbbb




Configuration and Transition

In order to define a notion of computation of M on an input
string w € ©* we introduce, as always, a notion of a
configuration and transition relation

A configuration is any tuple
(qw,y) e Kx X" xT*

where q € K represents a current state of Mand w € > is
unread part of the input, and y is a content of the stack read
top-down

The transition relation acts between two configurations
and hence ), is a certain binary relation defined on

K x X" xT* ie.

Fu € (K x X* x )2

Formal definition follows



Transition Relation

Given
M=(K, X, T, A, s, F))

Transition relation
Definition
Forany p, g € K, uxex*, a,pf, vy

(p’ ux, BQ) '_M (q’ X, ’)/(l’)
if and only if

((p, u, B), (g, v)) € A



Language L(M)

We denote as usual, the reflexive, transitive closure of Fy
denoted by " and define

Definition
LIM)y={weX*: (s,w, e)Fu*(p, e, ,e) forcertain p € F}

M accepts w € X" ifand only if w € L(M)
In plain English:

(s, w, e) means:

start with w and empty stack

(p, e, e) for certain p € F means:

finish in a final state after reading w and emptying all of the
stack



Exercises

Exercise
Here is M
M operates as follows
A pushes aa on the top of the stock while M is reading b,
switches to f (final state) non-deterministically;
and pops a while reading a - all in final state
M puts on the stock two a’s for each b,
and then removes all a’s from the stock comparing them
with a’s included in the word
all theses actions while M is in the final state
Write L(M)
L(M)={b"a*": n>0}



Exercises

Trace formally a computation of M that leads to the
acceptance of the string bbaaaa

The accepting computation is:
(s, bbaaaa, e) - (s, baaaa, aa) - (s, aaaa, aaaa)

Fwm (f, aaaa, aaaa) -y (f, aaa, aaa)
Fw (f,aa,aa) by (f,a,a) Fu (f, e, e)
Alternative definitonof M= (K, ¥, I, A, s, F) is

A={((s,b.e).(s,b)), ((s.e e)(f.e)). ((faa,b) (fe))}



Exercises
Exercise 8
Prove that L(G) is NOT regular, for
G=(V, %, S, R)
where V ={S. ()}, ©={()}
R={S— SS|(S)]e}

Proof by contradiction

Assume that L(G) is regular. The language L{ = (*)*is
regular and regular languages are closed under M, so

L(G)N Ly = (")

is regular. Contradiction



Exercises
Exercise 9
Given a context-free grammar
G= (V. % S R)
where V ={S, (,)}, ¥ ={(.)}
R={S— SS|(S)]|e}

1. Construct a PD automaton M, such that

2. Show that ()() € L(M)



Exercises

We use construction described in the proof of our Main
Theorem, in particular, in the proof of the its first part, i.e.

Lemma 1

Each context free language is accepted by some PD
automaton

Proof

Let G=(V, X, R, S) be a context-free grammar; we
construct a PD automaton M, such that L(G) = L(M) as
follows

M has only two states: initial s and a final f
M remains in state f after its first move

A contains the following transitions

1. ((s,e, e),(f, 9))

2. ((f,e, A), (f, x)) -foreachrule A — x
3. ((f,c, c), (f, e)) -foreachc €



Exercises

The rules of G are:
R={S— SS|(S)|e}

General case: A contains the following transitions
1. ((s,e, e), (f, 9))

2. ((f,e, A), (f, x)) -foreachrule A — x

3. ((f,c, c),(f, e)) -foreachc e X

The transitions of M are

A= {((s e e),(fS) ((f e S),(f, SS)),

((f. e, 8), (£, (5))). ((f. e, S), (1. e)),
(£, (), (. e), ((f.).)). (f. e)) }



Exercises

We trace formally a computation of M that leads to the
acceptance of the string  ()()

The accepting computation is:

(s.00-€) Fm (1.0, S)) Fu (£, ()(), SS))

Fm (1,00, (8)S) Fu (£,)0), S)S) Fm (1,)().)S))
Fm (F,0),8) Fm (£,0).(S)) Fu (£,),8)) Fu (£.),)) Fum (. e €)
We proved that

Fm
Y

00 € L(M)



Exercises

Exercise 9
Construct a regular grammar G such that

L(G)=b"Ua

We use the closure of CF languages over over UNION
construction

Let Gi, G> be two regular grammars with has sets of rules
R1 : 81 — bS1 ‘ e

Rz: Sgaa

Obviously
L(Gy)=b" and L(Gz)=a



Exercises

We construct G = Gy U Go as follows

We add new initial state S such that S # Sq, S», and make
Si, S, the internal states

The rules for G = Gy U Go are
S—851|S2, S —»bSi|le, S»—a
We re-write them as
S—A|B, B—>bB|e, A—a
Here is another, direct grammar G with rules

S—Bla, B —>bB|e



Exercises

Exercise 10
Let G be a CF grammar with X = {a, b} the following rules

S—aSb|A|B

A — abS |aSBb
B — AB |Ba |bSaB

Describe L(G)
By definition
L(G)={wex*:S ? w}

and hence we have that

L(G) =10



Exercises
Exercise 11
Let G be a CF grammar with = = {a,b} the following rules
S — aaA |B |abB |e

A — bS |a
B — bS

Construct a nondeterministic finite automaton M such that

We follow the poof of the L-G Theorem



L-G Theorem

L-G Theorem
Language L is regular if and only if there exists a regular
grammar G such that

L =L(G)

Proof part 1
Suppose that L is regular; then L is accepted by a
deterministic finite automaton

M= (K, ¥, 6 s, F)
We construct a regular grammar G as follows
G=(V, %L, R,S)
forV=XUK, S=s
R={q — ap: d(qg.a)=pt U {g » e: geF}



L-G Theorem Part 2
Proof part 2
Let now G be any regular grammar
G=(V, %L, R, S)

We define a nondeterministic automaton M such that

as follows
M= (K, X, A, s, F)

K=(V—-X)u{f} wherefisanew element

s=8, F={f}



Proof of L-G Theorem Part 2

The set A of transitions is
A={(A,w,B): A->wBeR;, AABeV-%, wekl"}

U{(A,w,f): A->weR, AABeV-%, weX"}

Once again, derivations are mimicked by the moves, i.e, for
any

A,...,ApeV—-% wy,..wel"
A1 =G W1A2 =G =G W1...Wn,1An:>G Wi...Wp

if and only if
(A, wi...wn) Fum (Ao, Wa ... Wp) By oo B (An,wh) B (. e)



Exercise 11 Solution
Rules of G

S — aaA |B|abB |e, A — bS |a, B — bS
The diagram of M is

Trace a computation of M that leads to the acceptance of
abbaaa and compare it with derivation of abbaaa in G



Exercises

The diagram of M is

Here is the computation of M and derivation of in G




