cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

LECTURE 11

CHAPTER 3 CONTEXT-FREE LANGUAGES

- 1. Context-free Grammars
- 2. Parse Trees
- 3. Pushdown Automata
- 4. Pushdown automata and context -free grammars
- 5. Languages that are not context- free

CHAPTER 3 Review Exercises

Exercise 1

Prove that the language

$$L = \{a^m b^n : m \ge n\}$$

is context- free

We construct a grammar G such that

$$L(G) = \{a^m b^n : m \ge n\}$$

as follows

$$G = (V, \Sigma, R, S)$$

where $V = \{a, b, S\}, \Sigma = \{a, b\}$

$$R = \{S \rightarrow aS \mid aSb \mid e\}$$

Derivation examples

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaSb \Rightarrow aaab$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Exercise 2

Construct a grammar G such that

$$L(G) = \{a^m b^n : m > n\}$$

We adopt rules

$$R = \{S \rightarrow aS \mid aSb \mid a\}$$

Exercise 3

Prove that

$$L = \{a^m b^n : m < n\}$$

is context- free

Observe that

$$L = \{a^n b^n : n \ge 0\}\{b\}^+$$

and hence L is context- free as regular language is context-free and context-free languages are **closed** under concatenation

Exercise 4

Prove that

$$L = \{a^m b^n : m \neq n\}$$

is context- free

Observe that

$${a^mb^n: m \neq n} = {a^mb^n: m > n} \cup {a^mb^n: m < n}$$

and hence L is context-free as context-free languages are closed under union and we have just proved that both union components are context-free

Exercise 5

We proved that

The context-free languages are **not closed** under complementation

We know that

$$L = \{a^nb^n: n \ge 0\}$$

is context- free

Prove that the complement of L is also context- free Observe that

$$\Sigma^* - L = \{a^m b^n : m \neq n\} \cup \Sigma^* a \Sigma^* b \Sigma^* a \Sigma^* \cup \Sigma^* b \Sigma^* a \Sigma^* b \Sigma^*$$

and hence $\Sigma^* - L$ is context-free as **union** of context-free languages

Exercise 6

Let L be a context-free language and let R be regular

Prove that L - R is context-free

What about R - L?

Observe that

$$L-R=L\cap(\Sigma^*-R)$$

and regular languages are closed under intersection and

Theorem 3

The **intersection** of a context-free language with a regular language is a context-free language

R-L does not need to be CF

Take $R = \Sigma^*$

$$R - L = \Sigma^* - L$$

and CF languages are **not closed** under complementation

Exercise 7

Construct a PD automaton M such that

$$L(M) = \{a^n b^{2n} : n \ge 0\}$$

The diagram of M is

The components of M are

$$K = \{s, f\}, \quad \Sigma = \{a, b\}, \quad \Gamma = \{a\}, \ s, \ F = \{f\}$$

The set \triangle of transitions is

$$\Delta = \{((s, a, e), (s, bb)), ((s, e, e), (f, e)), ((f, b, b), (f, e))\}$$

Show that $ab \notin L(M)$

 ${\sf M}$ is **non-deterministic**, so we have to consider **all possible** computations ${\sf M}$ starting at the word ${\sf ab}$

Here they are:

1.

The set \triangle of transitions is

$$\Delta = \{((s, a, e), (s, bb)), ((s, e, e), (f, e)), ((f, b, b), (f, e))\}$$

There are only two more "switches"

2. and 3.

The set \triangle of transitions is

$$\Delta = \{((s, a, e), (s, bb)), ((s, e, e), (f, e)), ((f, b, b), (f, e))\}$$

Show that $aabbbb \in L(M)$

Here is a computation of M accepting aabbbb

```
show (aa bbbb e LCM)

5 aa bbbb e bbbb
5 a bbbb bbbb f e e
6 bbb bbb bbbb
6 bbb bbb bbb
7 bbb bbb bbb
```


Configuration and Transition

In order to define a notion of computation of M on an input string $w \in \Sigma^*$ we introduce, as always, a notion of a configuration and transition relation

A configuration is any tuple

$$(q, w, \gamma) \in K \times \Sigma^* \times \Gamma^*$$

where $q \in K$ represents a current state of M and $w \in \Sigma^*$ is unread part of the input, and γ is a content of the stack read top-down

The transition relation acts between two configurations and hence \vdash_M is a certain binary relation defined on $K \times \Sigma^* \times \Gamma^*$, i.e.

$$\vdash_{M} \subseteq (K \times \Sigma^{*} \times \Gamma^{*})^{2}$$

Formal definition follows

Transition Relation

Given

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

Transition relation

Definition

For any
$$p, q \in K$$
, $u, x \in \Sigma^*$, α, β, γ
$$(p, ux, \beta\alpha) \vdash_M (q, x, \gamma\alpha)$$
 if and only if
$$((p, u, \beta), (q, \gamma)) \in \Delta$$

Language L(M)

We **denote** as usual, the <u>reflexive</u>, <u>transitive</u> closure of \vdash_M denoted by \vdash_M^* and define

Definition

$$L(M) = \{w \in \Sigma^* : (s, w, e) \vdash_M^* (p, e, , e) \text{ for certain } p \in F\}$$
M accepts $w \in \Sigma^*$ if and only if $w \in L(M)$
In plain English:
 (s, w, e) means:
start with w and empty stack
 (p, e, e) for certain $p \in F$ means:
finish in a final state after reading w and emptying all of the stack

Exercise

Here is M

M operates as follows

△ pushes aa on the top of the stock while M is reading b, switches to f (final state) non-deterministically; and pops a while reading a - all in final state

M puts on the stock two a's for each b,

and then **removes** all **a**'s from the stock **comparing** them with **a**'s included in the word

all theses actions while M is in the final state

$$L(M) = \{b^n a^{2n} : n \ge 0\}$$

Trace formally a computation of M that leads to the **acceptance** of the string bbaaaa

The **accepting** computation is:

```
(s,bbaaaa,e) \vdash_{M} (s,baaaa,aa) \vdash_{M} (s,aaaa,aaaa) \vdash_{M} (f,aaaa,aaaa) \vdash_{M} (f,aaa,aaa) \vdash_{M} (f,aa,aa) \vdash_{M} (f,a,a) \vdash_{M} (f,e,e) Alternative definition of M = (K, \Sigma, \Gamma, \Delta, s, F) is \Delta = \{((s,b,e),(s,b)), \ ((s,e,e),(f,e)), \ ((f,aa,b),(f,e))\}
```

Exercise 8

Prove that L(G) is NOT regular, for

$$G = (V, \Sigma, S, R)$$

where $V = \{S, (,)\}, \Sigma = \{(,)\}$

$$R = \{S \rightarrow SS \mid (S) \mid e\}$$

Proof by contradiction

Assume that L(G) is **regular**. The language $L_1 = (*)^*$ is regular and regular languages are closed under \cap , so

$$L(G) \cap L_1 = \binom{n}{n}$$

is regular. Contradiction

Exercise 9

Given a context-free grammar

$$G = (V, \Sigma, S, R)$$

where $V = \{S, (,)\}, \Sigma = \{(,)\}$

$$R = \{S \rightarrow SS \mid (S) \mid e\}$$

1. Construct a PD automaton M, such that

$$L(M) = L(G)$$

2. Show that $()() \in L(M)$

We use construction described in the proof of our **Main Theorem**, in particular, in the proof of the its first part, i.e.

Lemma 1

Each context free language is accepted by some PD automaton

Proof

Let $G = (V, \Sigma, R, S)$ be a context-free grammar; we construct a PD automaton M, such that L(G) = L(M) as follows

M has only two states: initial s and a final f

M remains in state f after its first move

△ contains the following transitions

- **1.** ((s, e, e), (f, S))
- **2.** ((f, e, A), (f, x)) for each rule $A \rightarrow x$
- **3.** ((f, c, c), (f, e)) for each $c \in \Sigma$

The rules of G are:

$$R = \{S \rightarrow SS \mid (S) \mid e\}$$

General case: △ contains the following transitions

- **1.** ((s, e, e), (f, S))
- **2.** ((f, e, A), (f, x)) for each rule $A \rightarrow x$
- **3.** ((f, c, c), (f, e)) for each $c \in \Sigma$

The transitions of M are

$$\Delta = \{ ((s, e, e), (f, S)), ((f, e, S), (f, SS)), \\ ((f, e, S), (f, (S))), ((f, e, S), (f, e)), \\ ((f, (, (), (f, e)), ((f,),)), (f, e)) \}$$

We trace formally a computation of M that leads to the acceptance of the string ()()

The accepting computation is:

$$(s,()(),e) \vdash_{M} (f,()(),S)) \vdash_{M} (f,()(),SS))$$

$$\vdash_{M} (f,()(),(S)S) \vdash_{M} (f,)(),S)S) \vdash_{M} (f,)(),S))$$

$$\vdash_{M} (f,(),S) \vdash_{M} (f,(),(S)) \vdash_{M} (f,),S)) \vdash_{M} (f,),)) \vdash_{M} (f,e,e)$$
 We proved that
$$()() \in L(M)$$

Exercise 9

Construct a regular grammar G such that

$$L(G) = b^* \cup a$$

We use the **closure** of **CF** languages over over **UNION** construction

Let G_1 , G_2 be two regular grammars with has sets of rules

$$R_1: S_1 \rightarrow bS_1 \mid e$$

$$R_2: S_2 \rightarrow a$$

Obviously

$$L(G_1) = b^*$$
 and $L(G_2) = a$

We construct $G = G_1 \cup G_2$ as follows

We **add** new initial state S such that $S \neq S_1, S_2$, and make S_1, S_2 the internal states

The rules for $G = G_1 \cup G_2$ are

$$S \rightarrow S_1 \mid S_2, \quad S_1 \rightarrow bS_1 \mid e, \quad S_2 \rightarrow a$$

We re-write them as

$$S \rightarrow A \mid B, \quad B \rightarrow bB \mid e, \quad A \rightarrow a$$

Here is another, direct grammar G with rules

$$S
ightarrow B | a, \quad B
ightarrow bB | e$$

Exercise 10

Let G be a CF grammar with $\Sigma = \{a, b\}$ the following rules

$$S \rightarrow aSb \mid A \mid B$$

$$A \rightarrow abS \mid aSBb$$

$$B \rightarrow AB \mid Ba \mid bSaB$$

Describe L(G)

By definition

$$L(G) = \{ w \in \Sigma^* : S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

and hence we have that

$$L(G) = \emptyset$$

Exercise 11

Let G be a CF grammar with $\Sigma = \{a, b\}$ the following rules

$$S \rightarrow aaA \mid B \mid abB \mid e$$

$$A \rightarrow bS \mid a$$

$$B \rightarrow bS$$

Construct a **nondeterministic** finite automaton M such that

$$L(M) = L(G)$$

We follow the poof of the **L-G Theorem**

L-G Theorem

L-G Theorem

Language L is **regular** if and only if there exists a **regular** grammar G such that

$$L = L(G)$$

Proof part 1

Suppose that L is **regular**; then L is accepted by a **deterministic** finite automaton

$$M = (K, \Sigma, \delta, s, F)$$

We **construct** a regular grammar **G** as follows

$$G = (V, \Sigma, R, S)$$

for
$$V = \Sigma \cup K$$
, $S = s$

$$R = \{q \ \rightarrow \ ap: \ \delta(q,a) = p\} \ \cup \ \{q \ \rightarrow \ e: \ q \in F\}$$

L-G Theorem Part 2

Proof part 2

Let now G be any regular grammar

$$G = (V, \Sigma, R, S)$$

We define a **nondeterministic** automaton M such that

$$L(M) = L(G)$$

as follows

$$M=(K,\ \Sigma,\ \Delta,\ s,\ F)$$
 $K=(V-\Sigma)\cup\{f\}$ where f is a new element $s=S,\quad F=\{f\}$

Proof of L-G Theorem Part 2

The set \triangle of transitions is

$$\Delta = \{ (A, w, B) : A \to wB \in R; A, B \in V - \Sigma, w \in \Sigma^* \}$$

$$\cup \{ (A, w, f) : A \to w \in R; A, B \in V - \Sigma, w \in \Sigma^* \}$$

Once again, derivations are mimicked by the moves, i.e, for any

$$A_1,\ldots,A_n\in V-\Sigma,\ \ w_1,\ldots w_n\in \Sigma^*$$

$$A_1\Rightarrow_G \ w_1A_2\Rightarrow_G\cdots\Rightarrow_G \ w_1\ldots w_{n-1}A_n\Rightarrow_G \ w_1\ldots w_n$$
 if and only if

$$(A_1, w_1 \dots w_n) \vdash_{\mathsf{M}} (A_2, w_2 \dots w_n) \vdash_{\mathsf{M}} \dots \vdash_{\mathsf{M}} (A_n, w_n) \vdash_{\mathsf{M}} (f, e)$$

Exercise 11 Solution

Rules of G

$$S o aaA \mid B \mid abB \mid e, \ A o bS \mid a, \ B \ o bS$$

The diagram of M is

Trace a computation of M that leads to the acceptance of abbaaa and **compare** it with derivation of abbaaa in G

The diagram of M is

Here is the computation of M and derivation of in G

