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CONTEXT-FREE LANGUAGES
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CHAPTER 3
Review Exercises



Exercises

Exercise 1
Prove that the language

L = {ambn : m ≥ n}

is context- free
We construct a grammar G such that

L(G) = {ambn : m ≥ n}

as follows
G = (V ,Σ,R ,S)

where V = {a, b ,S}, Σ = {a, b}

R = {S → aS |aSb | e}

Derivation examples

S ⇒ aS ⇒ aaS ⇒ aaaSb ⇒ aaab

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb



Exercises

Exercise 2
Construct a grammar G such that

L(G) = {ambn : m > n}

We adopt rules

R = {S → aS |aSb | a}

Exercise 3
Prove that

L = {ambn : m < n}
is context- free
Observe that

L = {anbn : n ≥ 0}{b}+

and hence L is context- free as regular language is
context-free and context-free languages are closed under
concatenation



Exercises

Exercise 4

Prove that
L = {ambn : m , n}

is context- free

Observe that

{ambn : m , n} = {ambn : m > n} ∪ {ambn : m < n}

and hence L is context- free as context-free languages are
closed under union and we have just proved that both union
components are context-free



Exercises

Exercise 5

We proved that

The context-free languages are not closed under
complementation

We know that
L = {anbn : n ≥ 0}

is context- free

Prove that the complement of L is also context- free

Observe that

Σ∗ − L = {ambn : m , n} ∪ Σ∗aΣ∗bΣ∗aΣ∗ ∪ Σ∗bΣ∗aΣ∗bΣ∗

and hence Σ∗ − L is context- free as union of context-free
languages



Exercises

Exercise 6
Let L be a context-free language and let R be regular
Prove that L − R is context-free
What about R − L?
Observe that

L − R = L ∩ (Σ∗ − R)

and regular languages are closed under intersection and
Theorem 3
The intersection of a context-free language with a regular
language is a context-free language
R − L does not need to be CF
Take R = Σ∗

R − L = Σ∗ − L

and CF languages are not closed under complementation



Exercises

Exercise 7

Construct a PD automaton M such that

L(M) = {anb2n : n ≥ 0}

The diagram of M is

The components of M are

K = {s, f}, Σ = {a, b}, Γ = {a}, s, F = {f}



Exercises

The set ∆ of transitions is

∆ = {((s, a, e), (s, bb)), ((s, e, e), (f , e)), ((f , b , b), (f , e))}

Show that ab < L(M)

M is non-deterministic, so we have to consider all possible
computations M starting at the word ab
Here they are:
1.



Exercises

The set ∆ of transitions is

∆ = {((s, a, e), (s, bb)), ((s, e, e), (f , e)), ((f , b , b), (f , e))}

There are only two more ”switches”
2. and 3.



Exercises

The set ∆ of transitions is

∆ = {((s, a, e), (s, bb)), ((s, e, e), (f , e)), ((f , b , b), (f , e))}

Show that aabbbb ∈ L(M)

Here is a computation of M accepting aabbbb



Configuration and Transition

In order to define a notion of computation of M on an input
string w ∈ Σ∗ we introduce, as always, a notion of a
configuration and transition relation

A configuration is any tuple

(q,w, γ) ∈ K × Σ∗ × Γ∗

where q ∈ K represents a current state of M and w ∈ Σ∗ is
unread part of the input, and γ is a content of the stack read
top-down

The transition relation acts between two configurations
and hence `M is a certain binary relation defined on
K × Σ∗ × Γ∗, i.e.

`M ⊆ (K × Σ∗ × Γ∗)2

Formal definition follows



Transition Relation

Given
M = (K , Σ, Γ, ∆, s, F))

Transition relation

Definition

For any p, q ∈ K , u, x ∈ Σ∗, α, β, γ

(p, ux, βα) `M (q, x, γα)

if and only if

((p, u, β), (q, γ)) ∈ ∆



Language L(M)

We denote as usual, the reflexive, transitive closure of `M

denoted by `M
∗ and define

Definition

L(M) = {w ∈ Σ∗ : (s, w, e) `M
∗(p, e, , e) for certain p ∈ F}

M accepts w ∈ Σ∗ if and only if w ∈ L(M)

In plain English:

(s, w, e) means:

start with w and empty stack

(p, e, e) for certain p ∈ F means:

finish in a final state after reading w and emptying all of the
stack



Exercises

Exercise

Here is M

M operates as follows

∆ pushes aa on the top of the stock while M is reading b,

switches to f (final state) non-deterministically;

and pops a while reading a - all in final state

M puts on the stock two a’s for each b,

and then removes all a’s from the stock comparing them
with a’s included in the word

all theses actions while M is in the final state

Write L(M)
L(M) = {bna2n : n ≥ 0}



Exercises

Trace formally a computation of M that leads to the
acceptance of the string bbaaaa

The accepting computation is:

(s, bbaaaa, e) `M (s, baaaa, aa) `M (s, aaaa, aaaa)

`M (f , aaaa, aaaa) `M (f , aaa, aaa)

`M (f , aa, aa) `M (f , a, a) `M (f , e, e)

Alternative definition of M = (K , Σ, Γ, ∆, s, F) is

∆ = {((s, b , e), (s, b)), ((s, e, e), (f , e)), ((f , aa, b), (f , e))}



Exercises

Exercise 8

Prove that L(G) is NOT regular, for

G = (V , Σ, S, R)

where V = {S, (, )}, Σ = {(, )}

R = {S → SS | (S) | e}

Proof by contradiction

Assume that L(G) is regular. The language L1 = (∗)∗ is
regular and regular languages are closed under ∩, so

L(G) ∩ L1 = (n)n

is regular. Contradiction



Exercises

Exercise 9

Given a context-free grammar

G = (V , Σ, S, R)

where V = {S, (, )}, Σ = {(, )}

R = {S → SS | (S) | e}

1. Construct a PD automaton M, such that

L(M) = L(G)

2. Show that ()() ∈ L(M)



Exercises

We use construction described in the proof of our Main
Theorem, in particular, in the proof of the its first part, i.e.
Lemma 1
Each context free language is accepted by some PD
automaton
Proof
Let G = (V , Σ, R , S) be a context-free grammar; we
construct a PD automaton M, such that L(G) = L(M) as
follows
M has only two states: initial s and a final f
M remains in state f after its first move
∆ contains the following transitions
1. ((s, e, e ), (f, S))
2. ((f, e, A ), (f, x)) - for each rule A → x
3. ((f, c, c ), (f, e)) - for each c ∈ Σ



Exercises

The rules of G are:

R = {S → SS | (S) | e}

General case: ∆ contains the following transitions

1. ((s, e, e ), (f, S))

2. ((f, e, A ), (f, x)) - for each rule A → x

3. ((f, c, c ), (f, e)) - for each c ∈ Σ

The transitions of M are

∆ = { ((s, e, e), (f , S)), ((f , e, S), (f , SS)),

((f , e, S), (f , (S))), ((f , e, S), (f , e)),

((f , (, ( ), (f , e)), ((f , ), ) ), (f , e)) }



Exercises

We trace formally a computation of M that leads to the
acceptance of the string ()()

The accepting computation is:

(s, ()(), e) `M (f , ()(),S)) `M (f , ()(),SS))

`M (f , ()(), (S)S) `M (f , )(),S)S) `M (f , )(), )S))

`M (f , (),S) `M (f , (), (S)) `M (f , ),S)) `M (f , ), )) `M (f , e, e)

We proved that
()() ∈ L(M)



Exercises

Exercise 9

Construct a regular grammar G such that

L(G) = b∗ ∪ a

We use the closure of CF languages over over UNION
construction

Let G1, G2 be two regular grammars with has sets of rules

R1 : S1 → bS1 | e

R2 : S2 → a

Obviously
L(G1) = b∗ and L(G2) = a



Exercises

We construct G = G1 ∪ G2 as follows

We add new initial state S such that S , S1,S2, and make
S1, S2 the internal states

The rules for G = G1 ∪ G2 are

S → S1 |S2, S1 → bS1 | e, S2 → a

We re-write them as

S → A |B , B → bB | e, A → a

Here is another, direct grammar G with rules

S → B |a, B → bB | e



Exercises

Exercise 10

Let G be a CF grammar with Σ = {a, b} the following rules

S → aSb |A |B

A → abS |aSBb

B → AB |Ba |bSaB

Describe L(G)

By definition
L(G) = {w ∈ Σ∗ : S ∗⇒

G
w}

and hence we have that

L(G) = ∅



Exercises

Exercise 11

Let G be a CF grammar with Σ = {a, b} the following rules

S → aaA |B |abB |e

A → bS |a

B → bS

Construct a nondeterministic finite automaton M such that

L(M) = L(G)

We follow the poof of the L-G Theorem



L-G Theorem

L-G Theorem
Language L is regular if and only if there exists a regular
grammar G such that

L = L(G)

Proof part 1
Suppose that L is regular; then L is accepted by a
deterministic finite automaton

M = (K , Σ, δ, s, F)

We construct a regular grammar G as follows

G = (V , Σ, R , S)

for V = Σ ∪ K , S = s

R = {q → ap : δ(q, a) = p} ∪ {q → e : q ∈ F}



L-G Theorem Part 2

Proof part 2

Let now G be any regular grammar

G = (V , Σ, R , S)

We define a nondeterministic automaton M such that

L(M) = L(G)

as follows
M = (K , Σ, ∆, s, F)

K = (V − Σ) ∪ {f} where f is a new element

s = S, F = {f}



Proof of L-G Theorem Part 2

The set ∆ of transitions is

∆ = {(A ,w,B) : A → wB ∈ R; A ,B ∈ V − Σ, w ∈ Σ∗}

∪{(A ,w, f) : A → w ∈ R; A ,B ∈ V − Σ, w ∈ Σ∗}

Once again, derivations are mimicked by the moves, i.e, for
any

A1, . . . ,An ∈ V − Σ, w1, . . .wn ∈ Σ∗

A1 ⇒G w1A2 ⇒G · · · ⇒G w1 . . .wn−1An ⇒G w1 . . .wn

if and only if

(A1,w1 . . .wn) `M (A2,w2 . . .wn) `M . . . `M (An,wn) `M (f , e)



Exercise 11 Solution

Rules of G

S → aaA |B |abB |e, A → bS |a, B → bS

The diagram of M is

Trace a computation of M that leads to the acceptance of
abbaaa and compare it with derivation of abbaaa in G



Exercises

The diagram of M is

Here is the computation of M and derivation of in G


