
cse303
ELEMENTS OF THE THEORY OF

COMPUTATION

Professor Anita Wasilewska

LECTURE 10

CHAPTER 3
CONTEXT-FREE LANGUAGES

1. Context-free Grammars

2. Parse Trees

3. Pushdown Automata

4. Pushdown automata and context -free grammars

5. Languages that are not context- free

CHAPTER 3
PART 3: Pushdown automata

Pushdown Automata PDA

Computational Model of Pushdown Automata PDA

C1: Automata ”remembers” what it has already read

by putting it, one symbol at the time on stack, or

on pushdown store

C2: It always puts symbols on the top of the stack

Pushdown Automata PDA

Computational Model of Pushdown Automata PDA

C3: symbols could be removed from the top of the stack and

can be checked against the input

C4: Word is accepted when it has been read, stack is empty

and automaton is in a final state

Pushdown Automata PDA

Pushdown Automata for the context-free language
L == {wwR : w ∈ {a, b}∗}

Idea: Automata will read abbab putting its reverse babba
on the stack from down -to- up
It will stop nondeterministically and start to compare the
stack content with the rest of the input removing content
of the stack

PD Automata and CF Grammars

Goal

Our goal now is to prove a theorem similar to the theorem

for finite automata establishing equivalence of regular
languages

and finite automata, i.e. we want now to prove the following

Main Theorem

The class of languages accepted by pushdown automata

is exactly the class of Context-free languages

It means that we want to find best way to define pushdown

automaton order to achieve this goal

PD Automata and CF Grammars

Definition Idea

We have constructed, for any regular grammar G a

finite automaton M such that

L(G) = L(M)

by transforming any rule A → wB into a corresponding

transition (A ,w,B) ∈ ∆ of M that said:

” in state A read w and move to B ”

We extend this idea to non-regular rules and

pushdown automata as follows

Pushdown Automata PDA

Given a context-free grammar G and a rule

A → aBb for a, b ∈ Σ, A ,B ∈ V − Σ

We now translate it to a corresponding transition

(to be defined formally) of a PD automata M that says:

M in state A reads a, puts b on stack and goes to state B

Later, the symbols on the stack can be removed and

checked agains the input when needed

Word is accepted when it has been read, stack is empty and

automaton is in a final state

PDA - Mathematical Model

Definition

A Pushdown Automata is a sextuple

M = (K , Σ, Γ, ∆, s, F), where

K is a finite set of states

Σ as an alphabet of input symbols

Γ as an alphabet of stack symbols

s ∈ K is the initial state

F ⊆ K is the set of final states

∆ is a transition relation

∆ ⊆ (K × Σ∗ × Γ∗)× (K × Γ∗)

∆ is a finite set

Transition Relation

Given a PDA
M = (K , Σ, Γ, ∆, s, F)

We denote elements of stack alphabet by

α, β, γ, . . .

with indices if necessary

We usually use different symbols for K , Σ, i.e. we assume

that K ∩ Σ = ∅

Pushdown automata is nondeterministic,

∆ may be not a function

Transition Relation

Consider M = (K , Σ, Γ, ∆, s, F) with

∆ ⊆ (K × Σ∗ × Γ∗)× (K × Γ∗)

and let an element

((p, u, β), (q, γ)) ∈ ∆

This means that the automaton M in the state p with β to the

top of the stack,

reads u from the input,

replaces β by γ on the top of the stack, and

goes to state q

Special Transitions

Given a transition

((p, u, β), (q, γ)) ∈ ∆

Here are some spacial cases, i.e some special transitions

that operate on the stack

Push a - adds symbol a to the top of the stack

((p, u, e), (q, a)) push a

Pop a - removes symbol a from the top of the stack

((p, u, a), (q, e)) pop a

Configuration and Transition

In order to define a notion of —bf computation of M on an

input string w ∈ Σ∗ we introduce, as always, a notion of a

configuration and transition relation

A configuration is any tuple

(q,w, γ) ∈ K × Σ∗ × Γ∗

where q ∈ K represents a current state of M and w ∈ Σ∗ is
unread part of the input, and γ is a content of the stack

read top-down

Configuration and Transition

The transition relation acts between two configurations

and hence `M is a certain binary relation

defined on K × Σ∗ × Γ∗, i.e.

`M ⊆ (K × Σ∗ × Γ∗)2

Formal definition follows

Transition Relation Definotion

Definition

Given a push down automaton

M = (K , Σ, Γ, ∆, s, F))

A binary relation `M ⊆ (K × Σ∗ × Γ∗)2 is a

transition relation if and only if the following holds

For any p, q ∈ K , u, x ∈ Σ∗, α, β, γ

(p, ux, βα) `M (q, x, γα)

if and only if

((p, u, β), (q, γ)) ∈ ∆

Language L(M)

We denote as usual, the reflexive, transitive closure of the

transition relation `M by `M
∗ and define, as usual the

language L(M) as follows

L(M) = {w ∈ Σ∗ : (s, w, e) `M
∗(p, e, , e) for certain p ∈ F}

and we say that

M accepts w ∈ Σ∗ if and only if w ∈ L(M)

Language L(M)

We say it In plain English:

M accepts w ∈ Σ∗ if and only if there is a computation

in M such that it starts with w and with empty stack

(i.e. it starts with (s, w, e))

and it ends in a final state after reading w and emptying all

of the stack

(it ends with (p, e, e) for certain p ∈ F)

Pushdown and Finite Automata)

Theorem
The class FA of finite automata is a proper subset of the
class PDA of pushdown automata, i.e.

FA ⊂ PDA

Proof
We show that every FA automaton is a PDA automaton that
operates on an empty stack
Given a FA automaton M = (K , Σ, δ, s, F)

We construct PDA automaton

M′ = (K , Σ, Γ, ∆′, s, F))

where Γ = ∅ and

∆′ = {((p, u, e), (q, e) : (p, u, q) ∈ ∆}

Obviously, L(M) = L(M’) and hence we proved that

M ≈ M′

Useful Transitions)

Useful transitions

((p, u, e), (q, a)) push a

((p, u, a), (q, e)) pop a

In particular we have the following compare transitions:

((p, a, a), (q, e)) compare and pop a

((p, a, b), (q, e)) compare a with b and pop b

compare transition compares a on the input with a or b on

the top of the stack and pops them from the stack

Examples and Exercises

Examples of PDA

Example 1
We construct M such that L = {wcwR : w ∈ {a, b}∗}

M = (K , Σ, Γ, ∆, s, F))

for K = {s, f}, Σ = {a, b , c} = Γ, F = {f} and ∆ has the
following transitions

Exercise 1 Trace a computation of of M accepting the word
abbcbba

Example1

Let’s analyze the transitions of ∆

1. ((s, a, e), (s, a)) - pushes a remaining in state s

2. ((s, b, e), (s, b)) - pushes b remaining in state s

3. ((s, c, e), (f, e)) - switches from s to f when sees c

4. ((f, a, a), (f, e)) - compares and pops a remaining in
state f

5. ((f, b, b), (f, e)) - compares and pops b remaining in
state f

Operation of M

1. + 2. put what M reads from input on the stack bottom-up
until it reaches c

Example 1

Operation of M

3. M switches to the final state leaving the stack untouched

The stack is being build bottom-up so what is on the stack is
the reverse to the part read, it means to the word w

4. + 5. compare the input located after c with what is
located already on the stack and remove symbols when they
match with the input

M is hence checking whether w from the input before c is
equal to wR

All the last actions are done with M remaining with the final
state, so when the stack is empty it indicates that
wcwR ∈ L(M) and that

L(M) = {wcwR : w ∈ {a, b}∗}

Exercise)

Exercise 1 Trace a computation of of M accepting the word
abbcbba

Here it is (Book p.133)

Observe that M is deterministic

Example 2

Example 2 Construct a PD M such that

L(M) = {wwR : w ∈ {a, b}∗}

M construction goes as in the previous Example 1, but now
we don’t have c as a marker when to end reading w and to
switch to f and start to compare input with the content of the
stack

We now switch to f nondeterministically at any stage of
the computation, hoping to find the proper ”middle” occupied
previously by c

We replace the transition 3. ((s, c, e), (f , e)) by a new
non-deterministic transition

3’. ((s, e, e), (f, e)) - switches from s to f at any time

Example 2

The new set of transitions ∆ is now
1. ((s, a, e), (s, a)) - pushes a remaining in state s
2. ((s, b, e), (s, b)) - pushes b remaining in state s
3’. ((s, e, e), (f, e)) - switches from s to f at any time
4. ((f, a, a), (f, e)) - compares and pops a remaining in
state f
5. ((f, b, b), (f, e)) - compares and pops b remaining in
state f
By analysis as in the previous example we prove that

L(M) = {wwR : w ∈ {a, b}∗}

Exercise 2 Trace all computation of M accepting the word
abbbba
Many of them will NOT accept wwR ∈ L(M) but one for sure
will do

Example 3

Example 3 Let M be a PDA , such that its
∆ has the following 8 transitions

L(M) = {w ∈ {a, b}∗ : w has the same number of a’s and b’s }

Exercise 3

Exercise 3

Given M
M = (K , Σ, Γ, ∆, s, F))

for K = {s, q, f}, Σ = {a, b}, Γ = {a, b , c}, F = {f} and ∆
has the 8 transitions from the Example 3.

Write a short description of how M operates

Observe that now the input alphabet Σ , Γ

We use the symbol c ∈ Γ as a marker which we put on the
bottom of the stack

We keep either a or b on the stack

A stack of a ’s indicate the excess of a ’s over b ’s and

a stack of b ’s indicate the excess of b ’s over a ’s thus read

Exercise 3

M when it reads an a from input proceeds as follows:

either starts a stack of a ’s from the bottom while keeping the
bottom marker c (transition 2.),

or pushes a on the stack of a’s (transition 3.),

or pops b from the stack of b’s (transition 4.)

M when it reads an b from input proceeds analogously:

either starts a stack of b ’s from the bottom while keeping the
bottom marker c (transition 5.),

or pushes b on the stack of b’s (transition 6.),

or pops a from the stack of a’s (transition 7.)

Exercise 3

Finally, when bottom marker c is the only symbol left on the
stack,

M may remove it and pass to the final state (transition 8.)

If at this point all the input has been read the input string is
accepted

So we have proved that our construction is correct and

L(M) = {w ∈ {a, b}∗ : w has the same number of a’s and b’s }

Exercises

Example 4 Trace a computation of M accepting the word
abbbabaaa

Here it is

State Diagrams for Pushdown Automata

Diagram

M in state p

1. reads w

2. replaces β by γ on the top of the stack

3. goes to the state q

State Diagrams for Pushdown Automata

Diagram

((p, u, e), (q, a)) ∈ ∆ push a

M in state p
1. reads u
2. pushes a on the top of the stack
3. goes to the state q

State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state
In state p
1. reads u
2. pushes a on the top of the stack
3. goes to the state p

State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state, reading nothing
In state p
1. reads e
2. pushes a on the top of the stack
3. goes to the state p OR goes to the state q

State Diagrams for Pushdown Automata

Diagram

((p, u, a), (q, e)) ∈ ∆ pop a

M in state p
1. reads u
2. pops a from the top of the stack
3. goes to the state q

State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state

In state p

1. reads u

2. pops a from the top of the stack

3. goes to the state p

State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state, reading nothing

In state p

1. reads e

2. pushes a on the top of the stack

3. goes to the state p

State Diagrams for Pushdown Automata

Diagram of PD M’

that imitates the FA colorred M

Theorem: Any FA automaton is a PD automaton

Exercises

Exercise 4

Diagram of M

Write components of M and find its language L(M)

Exercises

Exercise 4 Solution

Diagram of M

∆ components are

((q0, a, e), (q0, a)) - push a

((q0, b , e), (q0, b)) - push b

((q0, c, e), (q1, e)) - switches to final q1 when sees c

((q1, a, a), (q1, e)) - compares and pops a

((q1, b , b), (q1, e)) - compares and pops b

L(M) = {wcwR : w ∈ {a, b}∗}

Exercises

Exercise 5

Diagram of M

Write components of M and find its language L(M)

Exercises

Exercise 5 Solution
Diagram of M

∆ components are
((q0, a, e), (q0, a)) - push a
((q0, b , e), (q0, b)) - push b
((q0, e, e), (q1, e)) - switch from q0 to q1 at any time
((q1, a, a), (q1, e)) - compare and pop a
((q1, b , b), (q1, e)) - compare and pop b
M is nondeterministic

L(M) = {wwR : w ∈ {a, b}∗}

Exercises

Exercise 6
Diagram of M is

Write components of M and find its language L(M)

Exercises

Exercise 6 Solution
Diagram of M is

∆ components are
((q0, a, e), (q0, a)) - push a when reading a while in q0

((q0, e, e), (q2, e)) - switch to q2, write and read nothing
((q0, b , a), (q1, e)) - when reading b switch to q1, pop a
((q1, b , a), (q1, e)) - when reading b pop a while in q1

((q2, e, a), (q2, e)) - while in q2 pop a
M is nondeterministic

Exercises

Exercise 6 Solution

Diagram of M is

The language is

L(M) = {a i : i ≥ 0} ∪ {a ib i : i ≥ 1 }

CHAPTER 3
CONTEXT-FREE LANGUAGES

1. Context Free Grammars

2. Pushdown Automata

3. Pushdown automata and context -free grammars

4. Languages that are and are not context- free

CHAPTER 3
PART 3: Pushdown automata and context -free grammars

PDA Main Theorem

We are going to show now that the PD automaton is exactly

what is needed to accept arbitrary context-free language, i.e.

we are going to prove the following

PDF Main Theorem

The class of languages accepted by PD automata is exactly

the class of context-free languages

PDA Main Theorem Proof

We break the proof of the PDF Main Theorem into two parts

Lemma 1

Each context free language is accepted by some

PD automaton

Lemma 2

If a language is accepted by a PD automaton, it is a

context free language

We prove here only the Lemma 1

The proof of and the Lemma 2 is included in the Book

on pages 139 - 142

Proof of Lemma 1

Lemma 1

Each context free language is accepted by some

PD automaton

Proof

Let G = (V , Σ, R , S) be a context-free grammar; we must
construct a PD automaton M, such that L(G) = L(M)

M we construct has only two states p and q and

M remains in state q after its first move

M uses V, the set of grammar terminals and nonterminals as

its stack alphabet

Proof of Lemma 1

Given context-free grammar the G = (V , Σ, R , S)

We define corresponding PD automaton as

M = (K = {p, q}, Σ, Γ = V , ∆, p, {q})

where ∆ contains the following transitions

1. ((p, e, e), (q, S))

2. ((q, e, A), (q, x)) - for each rule A → x in R

3. ((q, c, c), (q, e)) - for each c ∈ Σ

The PD automaton M starts operation by pushing grammar

start symbol S on its initially empty pushdown store and

entering state q (transition 1.)

Proof of Lemma 1

Remaining ∆ transitions are

2. ((q, e, A), (q, x)) - for each rule A → x in R

3. ((q, σ, σ), (q, e)) - for each σ ∈ Σ

M on each subsequent step

either replaces the topmost nonterminal symbol A on the

stack by the right side x of some rule A → x in R

(transition of type 2.)

or pops the topmost symbol of the stack provided

it matches the input symbol (transition of type 3.)

Proof of Lemma 1

The transitions of M are designed so that the stack

during the accepting computation mimics a leftmost (regular)

grammar derivation of the input string

M intermittently carries out a step of such derivation on the

stack and between such steps it pops from the stack any

terminal symbols that match the symbols read from the input

Proof of Lemma 1

Popping the terminals exposes in turn the leftmost

nonterminal, so that the process can continue

until the input is read and the stack is empty

All these steps are carried while M is in the final state,

hence we get that the input word is accepted

We conduct the formal proof of the Lemma 1 by induction

on the length of derivation and computation

Example

Example of the construction of the proof of Lemma 1

Let G be such that

L(G) = {wcwR : w ∈ {a, b}∗}

i.e. G = (V , Σ, R , S), for V = {a, b , c,S}, Σ = {a, b , c},
and R = {S → aSa |bSb | c}

The corresponding PD automaton is

M = (K = {p, q}, Σ = {a, b , c}, Γ = {a, b , c,S}, ∆, p, {q})

with ∆ corresponding to rules of G ,defined as follows

Example

∆ transitions corresponding to rules of G are

Example

The word abbcbba ∈ L(M)

Here is a computations accepting abbcbba

CHAPTER 3
CONTEXT-FREE LANGUAGES

1. Context Free Grammars

2. Pushdown Automata

3. Pushdown automata and context -free grammars

4. Languages that are and are not context- free

CHAPTER 3
PART 4: Languages that are and are not context- free

Establishing Context-freeness of Languages

The PDA Main Theorem proved the equivalency of the

following two views of context -free languages

1. A language L is context-free if it is generated by a

context-free grammar (definition)

2. A language L is context-free if it is accepted by a

push-down automaton

These characterizations enrich our understanding of the

context-free languages since they provide two different

methods for recognizing when a language is context free

Establishing Context-freeness of Languages

We examine and provide now further tools for establishing

context-freeness of languages

We will prove some important closure properties of the

context free languages under language operations, as we

have done in a case of the regular languages

Establishing Context-freeness of Languages

We also present a Pumping Theorem for the context free

languages that is similar to the Pumping Lemmas we have

proved for the regular languages

The Pumping Theorem enables us to show that certain

languages are not context-free and we will also examine

some of these languages

Closure Theorems

We are going the prove the following theorems

Closure Theorem 1

The context-free languages are closed under union,
concatenation, and Kleene star

Closure Theorem 2

The intersection of a context-free language with a regular
language is a context-free language

Closure Theorem 3

The context-free languages are not closed under
intersection and complementation

Closure Theorem 1 Proof

Closure Theorem 1

The context-free languages are closed under union,
concatenation, and Kleene star

Proof

Let G1 = (V1 Σ1, R1, S1) and G2 = (V2 Σ2, R2, S2)

be two CF Grammars

We assume that they have two disjoint sets of nonterminals,
i.e. that (V1 − Σ1) ∩ (V2 − Σ2) = ∅
Union Closure G = G1 ∪ G2

We construct a grammar G = G1 ∪ G2 as follows

Let S be a new symbol and let

G = (V1 ∪ V2 ∪ {S}, Σ1, ∪ Σ2, R , S)

Closure Theorem 1 Proof

We define

R = R1 ∪ R2 ∪ {S → S1, S → S2}

For the only rules involving S are S → S1, S → S2

we have that

S ∗⇒
G

w if and only if S1
∗⇒
G

w or S2
∗⇒
G

w

Since G1 and G1 have two disjoint sets of nonterminals this is

equivalent to saying that

w ∈ L(G) if and only if w ∈ L(G1) or w ∈ L(G1)

and it proves that

L(G) = L(G1) ∪ L(G2)

Closure Theorem 1 Proof

Concatenation G = G1 ◦ G2

We construct a grammar G = G1 ◦ G2 as follows

G = (V1 ∪ V2 ∪ {S}, Σ1 ∪ Σ2, R , S)

where
R = R1 ∪ R2 ∪ {S → S1S2}

For the only rule involving S is S → S1S2 and G1 and G1

have two disjoint sets of nonterminals this is

saying that

w ∈ L(G) if and only if w = w1w2 for w1 ∈ L(G1),w2 ∈ L(G2)

It proves that
L(G) = L(G1) ◦ L(G2)

Closure Theorem 1 Proof

Kleene star G = G1
∗

We construct a grammar G = G = G1
∗ as follows

G = (V1 ∪ {S}, Σ1, R , S)

where
R = R1 ∪ R2 ∪ {S → e, S → SS1}

Observe that we need the rule S → e to make sure that
L(G) , set

Obviouly,
L(G) = L(G1)∗

Closure Theorems

We are going to prove now the following

Closure Theorem 2

The intersection of a context-free language with a regular
language is a context-free language

Closure Theorem 2 Proof

Closure Theorem 2

The intersection of a context-free language with a regular
language is a context-free language

Proof

Let R be a regular language and L a context-free language

By FA and PDF Main Theorems we have that

L = L(M)1 for some PD automaton

M1 = (K1, Σ1, Γ1, ∆1, s1, F1))

and R = L(M)2 for some deterministic automaton

M2 = (K2, Σ2, δ, s2, F2))

Closure Theorem 2 Proof

We construct a PD automaton M in a similar way to the direct

construction in the proof of the Theorem of the closure of

finite automata under intersection.

Namely, we define M as follows

We define M = M1 ∩M2 as

M = (K , Σ, Γ, ∆, s, F))

where

K = K1 × K2, Γ = Γ1, s = (s1, s2), F = F1 × F2,

and ∆ is defined in such way that it allows the computations

of M to be carried by the computations of M1, M2 in parallel

and a word is accepted by M only if it would be accepted by

both M1 and M2

Pumping Lemma
for Context Free Languages

Pumping Lemma

Pumping Lemma

Let G be a context-free grammar

Then there is a number K, depending on G, such that

any word w ∈ L(G) of length greater than K

can be re-written as

w = uvxyz for v , e or y , e

and for any n ≥ 0

uvnxynz ∈ L(G)

Not Context-free Languages

We use the Pumping Lemma to prove the following

Theorem

The language
L = {anbncn : n ≥ 0}

is NOT context-free

Proof

We carry the proof by contradiction

Assume that L is context-free, i.e. that L = L(G) for some

context-free grammar G

Let K be a constant for G as specified by the Pumping
Lemma

and let n > K/3

Not Context-free Languages

Then w = anbncn ∈ L(G) has a representation w = uvxyz
such that v , e or y , e and uvnxynz ∈ L(G) for
i = 0, 1, 2, 3, . . .

But this is impossible

for anbncn = uvxyz and either v or y contains two symbols
from {a, b , c} , then uv2xy2z contains a b before an a or a c
before a

and if v and y each contains only a’s, only b’s, or only c’s, then
uv2xy2z cannot contain equal number of a’s, b’s, and c’s

This contradiction ends the proof

Closure Theorems

Now we are ready to prove that the context-free languagaes

are not closed under certain operations

Closure Theorem 3

The context-free languages are not closed under
intersection and complementation

Proof

We divide the proof into proving the following two parts

Part 1

The context-free languages are not closed under intersection

Part 2

The context-free languages are not closed under
complementation

Closure Theorem 3 Proof

Part 1

The context-free languages are not closed under intersection

Proof

Assume that the context-free languages are are closed under
intersection

Observe that both languages

L1 = {anbncm : m, n ≥ 0} and L2 = {ambncn : m, n ≥ 0}

are context-free, so the language L1 ∩ L2 must be
context-free, but

L1 ∩ L2 = {anbncn : n ≥ 0}

and we have proved that L = {anbncn : n ≥ 0} is NOT

context-free. Contradiction

Closure Properties

Part 2

The context-free languages are not closed under
complementation

Proof

Assume that the context-free languages are are closed under
complementation

Take any two context-free languages L1, L2

Then the language

L1 ∩ L2 = Σ∗ − ((Σ∗ − L1) ∪ (Σ∗ − L2))

would be context-free, what contradicts just proved that fact

that the context-free languages are not closed under
intersection

Not Context-free Languages

Theorem 4

The following languages are NOT context-free

L1 = {a ib ja ib j : i, j ≥ 0}

L2 = {ap : p is prime}

L3 = {an2
: n ≥ 0}

L4 = {www : w ∈ {a, b}∗}

Proof

By the Pumping Lemma

Power of Pumping Lemma

We use the Pumping Lemma to prove that many languages
are not context-free

Unfortunately, there are some very simple non-context-free

languages which cannot be shown not to be context-free by

a direct application of the Pumping Lemma

One such example is

L = {ambn : either m > n, or m is prime and n ≥ m}

We prove L to be not context-free using the following

Parikh Theorem

Parikh Theorem

Parikh Theorem

If L is context-free, then Ψ(L) is semilinear,

where Ψ(L) is a certain well defined set of of n-tuples of

natural numbers associated with L

Hence to prove a language to be not context -free we use

Parikh Theorem in a following equivalent form

Parikh Theorem

If Ψ(L) is not semilinear, then L is not context-free

Parikh Theorem

We also use Parikh Theorem to show the following

interesting property of contex-free languages

Theorem 6

Every contex-free language over a one symbol alphabet

is regular

Context-free/ NOT Context-free

Exercise

Prove that the language

L = {ww : w ∈ {a, b}∗}

is NOT context-free

Hint

We know that

L1 = {a ib ja ib j : i, j ≥ 0}

is NOT context-free

Context-free/ NOT Context-free

Solution

Assume that L = {ww : w ∈ {a, b}∗} is context-free

Then the language
L ∩ a∗b∗a∗b∗

is context-free by Closure Theorem 2 that says:

”The intersection of a context-free language with a regular

language is a context-free language ”. But the language

{ww : w ∈ {a, b}∗} ∩ a∗b∗a∗b∗ = {a ib ja ib j : i, j ≥ 0}

is NOT context-free by Theorem 5

Contradiction

Context-free/ NOT Context-free

We have proved by constructing a PD automaton

and applying the Main Theorem that the language

L = {w ∈ {a, b}∗ : w has the same number of a’s and b’s }
is context- free

We use Pumping Lemma to prove that the languages

L = {w ∈ {a, b , c}∗ : w has the same number of a’s, b’s and c’s }

L = {apbn : p ∈ Prime, n > p}

are NOT context- free

