cse303 ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska

LECTURE 10

CHAPTER 3 CONTEXT-FREE LANGUAGES

- 1. Context-free Grammars
- 2. Parse Trees
- 3. Pushdown Automata
- 4. Pushdown automata and context -free grammars
- 5. Languages that are not context- free

CHAPTER 3 PART 3: Pushdown automata

Computational Model of Pushdown Automata PDA

C1: Automata "remembers" what it has already read by putting it, one symbol at the time on stack, or on pushdown store

C2: It always puts symbols on the top of the stack

Computational Model of Pushdown Automata PDA

C3: symbols could be **removed** from the **top** of the stack and can be **checked** against the input

C4: Word is accepted when it has been read, stack is empty and automaton is in a final state

Pushdown Automata for the context-free language

$$L == \{ww^R: \quad w \in \{a,b\}^*\}$$

Idea: Automata will read abbab putting its reverse babba on the **stack** from down -to- up

It will **stop** nondeterministically and start to **compare** the **stack** content with the **rest of the input** removing content of the stack

PD Automata and CF Grammars

Goal

Our goal now is to **prove** a theorem similar to the theorem for finite automata establishing **equivalence** of regular languages

and finite automata, i.e. we want now to prove the following

Main Theorem

The class of languages **accepted** by **pushdown** automata **is exactly** the class of Context-free languages

It means that we want to find best way to **define** pushdown automaton order to achieve this goal

PD Automata and CF Grammars

Definition Idea

We have constructed, for any regular grammar G a finite automaton M such that

$$L(G) = L(M)$$

by **transforming** any rule A o wB into a corresponding transition $(A, w, B) \in \Delta$ of M that said: "in state A **read** w and **move** to B"

We extend this idea to non-regular **rules** and pushdown automata as follows

Given a context-free grammar G and a rule

$$A \rightarrow aBb$$
 for $a, b \in \Sigma$, $A, B \in V - \Sigma$

We now **translate** it to a corresponding transition (to be defined formally) of a PD automata M that says:

M in state A reads a, puts b on stack and goes to state B Later, the symbols on the stack can be removed and checked agains the input when needed

Word is **accepted** when it has been read, **stack** is empty and automaton is in a final state

PDA - Mathematical Model

Definition

A Pushdown Automata is a sextuple

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$
, where

- K is a finite set of **states**
- Σ as an alphabet of input symbols
- as an alphabet of stack symbols
- $s \in K$ is the initial state
- $F \subseteq K$ is the set of **final states**
- △ is a transition relation

$$\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$$

 \triangle is a **finite** set

Transition Relation

Given a PDA

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

We denote elements of stack alphabet by

$$\alpha, \beta, \gamma, \dots$$

with indices if necessary

We usually use different symbols for K, Σ , i.e. we assume that $K \cap \Sigma = \emptyset$

Pushdown automata is **nondeterministic**, △ may be **not** a function

Transition Relation

Consider
$$M=(K, \Sigma, \Gamma, \Delta, s, F)$$
 with
$$\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$$

and let an element

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

This means that the automaton M in the **state** p with β to the top of the stack,

reads u from the input, replaces β by γ on the top of the stack, and goes to state α

Special Transitions

Given a transition

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

Here are some spacial cases, i.e some **special transitions** that operate on the **stack**

Push a - adds symbol a to the top of the stack

$$((p, u, e), (q, a))$$
 push a

Pop a - removes symbol a from the top of the stack

$$((p, u, a), (q, e))$$
 pop a

Configuration and Transition

In order to define a notion of —bf computation of M on an input string $w \in \Sigma^*$ we introduce, as always, a notion of a **configuration** and **transition** relation

A configuration is any tuple

$$(q, w, \gamma) \in K \times \Sigma^* \times \Gamma^*$$

where $q \in K$ represents a current state of M and $w \in \Sigma^*$ is unread part of the input, and γ is a content of the stack read top-down

Configuration and Transition

The transition relation acts between two configurations and hence \vdash_M is a certain binary relation defined on $K \times \Sigma^* \times \Gamma^*$, i.e.

$$\vdash_{M} \subseteq (K \times \Sigma^{*} \times \Gamma^{*})^{2}$$

Formal definition follows

Transition Relation Definotion

Definition

Given a push down automaton

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

A binary relation $\vdash_M \subseteq (K \times \Sigma^* \times \Gamma^*)^2$ is a **transition relation** if and only if the following holds For any $p, q \in K$, $u, x \in \Sigma^*$, α, β, γ

$$(p, ux, \beta\alpha) \vdash_M (q, x, \gamma\alpha)$$
 if and only if

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

Language L(M)

We **denote** as usual, the reflexive, transitive closure of the **transition relation** \vdash_M by \vdash_M^* and define, as usual the language L(M) as follows

$$L(M) = \{ w \in \Sigma^* : (s, w, e) \vdash_M^* (p, e, e) \text{ for certain } p \in F \}$$
 and we say that

M accepts $w \in \Sigma^*$ if and only if $w \in L(M)$

Language L(M)

We say it In plain English:

```
M accepts w \in \Sigma^* if and only if there is a computation in M such that it starts with w and with empty stack (i.e. it starts with (s, w, e)) and it ends in a final state after reading w and emptying all of the stack (it ends with (p, e, e) for certain p \in F)
```

Pushdown and Finite Automata)

Theorem

The class **FA** of finite automata is a proper subset of the class **PDA** of pushdown automata, i.e.

Proof

We show that every FA automaton is a PDA automaton that operates on an empty stack

Given a FA automaton $M = (K, \Sigma, \delta, s, F)$ We construct PDA automaton

$$M' = (K, \Sigma, \Gamma, \Delta', s, F))$$

where $\Gamma = \emptyset$ and

$$\Delta' = \{((p, u, e), (q, e) : (p, u, q) \in \Delta\}$$

Obviously, L(M) = L(M') and hence we proved that

$$M \approx M'$$

Useful Transitions)

Useful transitions

$$((p, u, e), (q, a))$$
 push a $((p, u, a), (q, e))$ pop a

In particular we have the following **compare** transitions:

$$((p, a, a), (q, e))$$
 compare and pop a

((p, a, b), (q, e)) compare a with b and pop b compare transition compares a on the input with a or b on the top of the stack and pops them from the stack

Examples and Exercises

Examples of PDA

Example 1

We construct M such that $L = \{wcw^R : w \in \{a, b\}^*\}$

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

for $K = \{s, f\}$, $\Sigma = \{a, b, c\} = \Gamma$, $F = \{f\}$ and Δ has the following transitions

- ((s, a, e), (s, a))
 ((s, b, e), (s, b))
- 3. ((s, c, e), (f, e))
- 4. ((f, a, a), (f, e))
 5. ((f, b, b), (f, e))

Exercise 1 Trace a computation of of M accepting the word abbcbba

Let's analyze the transitions of \triangle

- 1. ((s, a, e), (s, a)) pushes a remaining in state s
- 2. ((s, b, e), (s, b)) pushes b remaining in state s
- 3. ((s, c, e), (f, e)) switches from s to f when sees c
- **4.** ((f, a, a), (f, e)) **compares** and **pops** a remaining in state f
- 5. ((f, b, b), (f, e)) compares and pops b remaining in state f

Operation of M

1. + 2. put what M reads from input on the **stack** bottom-up until it reaches c

Operation of M

- 3. M switches to the final state leaving the stack untouched The stack is being build bottom-up so what is on the stack is the reverse to the part read, it means to the word w
- **4.** + **5. compare** the **input** located after **c** with what is located already on the stack and **remove** symbols when they match with the input

M is hence checking whether w from the input before c is equal to w^R

All the last actions are done with M remaining with the final state, so when the **stack is empty** it indicates that $wcw^R \in L(M)$ and that

$$L(M) = \{wcw^R : w \in \{a, b\}^*\}$$

Exercise)

Exercise 1 Trace a computation of of M accepting the word abbebba

Here it is (Book p.133)

State	Unnead Input	Stack	Transition Used
S	abbcbba	e	inc set of all string
S	bbcbba	a	1 00 00
S	bcbba	ba	2
S	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	a	a	5
f	e	e	4

Observe that M is deterministic

Example 2 Construct a PD M such that

$$L(M) = \{ww^R : w \in \{a, b\}^*\}$$

M construction goes as in the previous **Example 1**, but now we don't have **c** as a marker when to end reading **w** and to **switch** to **f** and start to **compare** input with the content of the stack

We now **switch** to **f nondeterministically** at any stage of the computation, hoping to find the proper "middle" occupied previously by **c**

We replace the transition **3.** ((s, c, e), (f, e)) by a new **non-deterministic** transition

3'. ((s, e, e), (f, e)) - switches from s to f at any time

The new set of transitions \triangle is now

- 1. ((s, a, e), (s, a)) pushes a remaining in state s
- 2. ((s, b, e), (s, b)) pushes b remaining in state s
- 3'. ((s, e, e), (f, e)) switches from s to f at any time
- **4.** ((f, a, a), (f, e)) **compares** and **pops** a remaining in state f
- 5. ((f, b, b), (f, e)) compares and pops b remaining in state f

By analysis as in the previous example we prove that

$$L(M) = \{ww^R : w \in \{a, b\}^*\}$$

Exercise 2 Trace **all computation** of **M** accepting the word **abbbba**

Many of them will NOT accept $ww^R \in L(M)$ but one for sure will do

Example 3 Let M be a PDA, such that its ∆ has the following 8 transitions

```
1. ((s, e, e), (q, c))
((q, a, c), (q, ac))
3. ((q, a, a), (q, aa))
4. ((q, a, b), (q, e))
5. ((q, b, c), (q, bc))
6. ((q, b, b), (q, bb))
7. ((q, b, a), (q, e))
8. ((q, e, c), (f, e))
```

Exercise 3

Exercise 3

Given M

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

for $K = \{s, q, f\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, c\}$, $F = \{f\}$ and Δ has the 8 transitions from the **Example 3**.

Write a short description of how M operates

Observe that now the input alphabet $\Sigma \neq \Gamma$

We use the symbol $c \in \Gamma$ as a **marker** which we put on the bottom of the stack

We keep either a or b on the stack

A stack of a 's indicate the **excess** of a 's over b 's and a stack of b 's indicate the **excess** of b 's over a 's thus read

Exercise 3

```
M when it reads an a from input proceeds as follows:
either starts a stack of a 's from the bottom while keeping the
bottom marker c (transition 2.),
or pushes a on the stack of a's (transition 3.),
or pops b from the stack of b's (transition 4.)
M when it reads an b from input proceeds analogously:
either starts a stack of b 's from the bottom while keeping the
bottom marker c (transition 5.),
or pushes b on the stack of b's (transition 6.).
or pops a from the stack of a's (transition 7.)
```

Exercise 3

Finally, when bottom **marker** c is the only symbol left on the stack,

M may remove it and pass to the **final** state (transition 8.) If at this point all the input has been **read** the input string is **accepted**

So we have proved that our construction is correct and

 $L(M) = \{ w \in \{a, b\}^* : w \text{ has the same number of } a's \text{ and } b's \}$

Exercises

Example 4 Trace a **computation** of M accepting the word abbbabaaa

Here it is

State	Unread	Stack	Transition Used	Comments
State	Input	Stack	Used	
s	abbbabaa	e	to like =	Initial configuration
9	abbbabaa	c	1	
9	bbbabaa	ac	2	Start a stack of a's.
9	bbabaa	c	7	Remove one a.
9	babaa	bc	5	Start a stack of b's.
9	abaa	bbc	6	a that a stable of b s.
9	baa	bc	4	
9	aa	bbc	6	
9	a	bc	4	
9	e	C	4	
ſ	e	e	8	Accepts.

State Diagrams for Pushdown Automata

Diagram

M in state p

- 1. reads w
- **2.** replaces β by γ on the top of the stack
- 3. goes to the state q

State Diagrams for Pushdown Automata

Diagram

$$((p, u, e), (q, a)) \in \Delta$$
 push a

M in state p

- 1. reads u
- 2. pushes a on the top of the stack
- 3. goes to the state q

State Diagrams for Pushdown Automata

Diagram

M pushes a with no change of state In state p

- 1. reads u
- 2. pushes a on the top of the stack
- 3. goes to the state p

Diagram

M pushes a with no change of state, reading nothing In state p

- 1. reads e
- 2. pushes a on the top of the stack
- 3. goes to the state p OR goes to the state q

Diagram

$$((p, u, a), (q, e)) \in \Delta$$
 pop a

M in state p

- 1. reads u
- 2. pops a from the top of the stack
- 3. goes to the state q

Diagram

M pushes a with no change of state In state p

- 1. reads u
- 2. pops a from the top of the stack
- 3. goes to the state p

Diagram

M pushes a with no change of state, reading nothing In state p

- 1. reads e
- 2. pushes a on the top of the stack
- 3. goes to the state p

Diagram of PD M'

that imitates the FA colorred M

Theorem: Any FA automaton is a PD automaton

Exercise 4

Diagram of M

Write components of M and find its language L(M)

Exercise 4 Solution Diagram of M

△ components are

$$((q_0, a, e), (q_0, a))$$
 - push a $((q_0, b, e), (q_0, b))$ - push b $((q_0, c, e), (q_1, e))$ - switches to final q_1 when sees c $((q_1, a, a), (q_1, e))$ - compares and pops a $((q_1, b, b), (q_1, e))$ - compares and pops b

 $L(M) = \{wcw^R : w \in \{a, b\}^*\}$

Exercise 5

Diagram of M

Write components of M and find its language L(M)

Exercise 5 Solution Diagram of M


```
△ components are
```

$$((q_0, a, e), (q_0, a))$$
 - push a $((q_0, b, e), (q_0, b))$ - push b $((q_0, e, e), (q_1, e))$ - switch from q_0 to q_1 at any time $((q_1, a, a), (q_1, e))$ - compare and pop a $((q_1, b, b), (q_1, e))$ - compare and pop b M is nondeterministic

$$L(M) = \{ww^R: w \in \{a,b\}^*\}$$

Exercise 6

Diagram of M is

Write components of M and find its language L(M)

Exercise 6 Solution **Diagram** of M is


```
components are
((q_0, a, e), (q_0, a)) - push a when reading a while in q_0
((q_0, e, e), (q_2, e)) - switch to q_2, write and read nothing
((q_0, b, a), (q_1, e)) - when reading b switch to q_1, pop a
((q_1, b, a), (q_1, e)) - when reading b pop a while in q_1
((q_2, e, a), (q_2, e)) - while in q_2 pop a
M is nondeterministic
```

4 D > 4 B > 4 B > 4 B > 9 Q P

Exercise 6 Solution

Diagram of M is

The language is

$$L(M) = \{a^i : i \geq 0\} \cup \{a^i b^i : i \geq 1\}$$

CHAPTER 3 CONTEXT-FREE LANGUAGES

- 1. Context Free Grammars
- 2. Pushdown Automata
- 3. Pushdown automata and context -free grammars
- 4. Languages that are and are not context- free

CHAPTER 3

PART 3: Pushdown automata and context -free grammars

PDA Main Theorem

We are going to show now that the PD automaton is exactly what is needed to **accept** arbitrary context-free language, i.e. we are going to prove the following

PDF Main Theorem

The class of languages **accepted** by PD automata is exactly the class of context-free languages

PDA Main Theorem Proof

We break the proof of the PDF Main Theorem into two parts

Lemma 1

Each context free language is accepted by some PD automaton

Lemma 2

If a language is **accepted** by a PD automaton, it is a context free language

We prove here only the **Lemma 1**The proof of and the **Lemma 2** is included in the Book on pages 139 - 142

Lemma 1

Each context free language is **accepted** by **some**PD automaton

Proof

Let $G = (V, \Sigma, R, S)$ be a context-free grammar; we must construct a PD automaton M, such that L(G) = L(M)

M we construct has only two states p and q and M remains in state q after its first move
M uses V, the set of grammar terminals and nonterminals as its stack alphabet

Given context-free grammar the $G = (V, \Sigma, R, S)$ We **define** corresponding PD automaton as

$$M = (K = \{p, q\}, \ \Sigma, \ \Gamma = V, \ \Delta, \ p, \ \{q\})$$

where \triangle contains the following transitions

- **1.** ((p, e, e), (q, S))
- **2.** ((q, e, A), (q, x)) for each rule $A \rightarrow x$ in R
- **3.** ((q, c, c), (q, e)) for each $c \in \Sigma$

The PD automaton M starts operation by pushing grammar start symbol S on its initially empty pushdown store and entering state q (transition 1.)

Remaining △ transitions are

- **2.** ((q, e, A), (q, x)) for each rule $A \rightarrow x$ in R
- **3.** $((q, \sigma, \sigma), (q, e))$ for each $\sigma \in \Sigma$

M on each subsequent step

either replaces the topmost nonterminal symbol A on the stack by the right side x of some rule $A \to x$ in R (transition of type 2.)

or pops the topmost symbol of the **stack** provided it matches the input symbol (transition of type **3.**)

The **transitions** of **M** are designed so that the **stack** during the **accepting** computation mimics a leftmost (regular) grammar **derivation** of the input string

M intermittently carries out a step of such derivation on the stack and between such steps it pops from the stack any terminal symbols that match the symbols read from the input

Popping the terminals exposes in turn the leftmost **nonterminal**, so that the process can continue **until** the input is read and the stack is **empty**

All these **steps** are **carried** while **M** is in the **final** state, hence we get that the **input** word is **accepted**

We conduct the **formal proof** of the **Lemma 1** by induction on the **length** of derivation and computation

Example

Example of the construction of the proof of **Lemma 1**Let **G** be such that

$$L(G)=\{wcw^R:\ \ w\in\{a,b\}^*\}$$
 i.e. $G=(V,\ \Sigma,\ R,\ S),$ for $V=\{a,b,c,S\},\ \Sigma=\{a,b,c\},$ and $R=\{S\to aSa\ |bSb\ |\ c\}$

The **corresponding PD** automaton is

$$M = (K = \{p, q\}, \ \Sigma = \{a, b, c\}, \ \Gamma = \{a, b, c, S\}, \ \Delta, p, \{q\})$$

with △ corresponding to rules of G, defined as follows

Example

△ transitions corresponding to rules of G are

$$\Delta = \{((p, e, e), (q, S)), (T1) \\ ((q, e, S), (q, aSa)), (T2) \\ ((q, e, S), (q, bSb)), (T3) \\ ((q, e, S), (q, c)), (T4) \\ ((q, a, a), (q, e)), (T5) \\ ((q, b, b), (q, e)), (T6) \\ ((q, c, c), (q, e))\}$$

Example

The word $abbcbba \in L(M)$ Here is a computations accepting abbcbba

State	Unread Input	Stack	Transition
p	abbcbba	e	
q	abbcbba	S	T1
q	abbcbba	aSa	T2
q	bbcbba	Sa	T5
q	bbcbba	bSba	T3
q	bcbba	Sba	T6
q	bcbba	bSbba	T3
q	cbba	Sbba	T6
q	cbba	cbba	T4
q	bba	bba	T7
q	ba	ba	T6
\overline{q}	a	a	T6
\overline{q}	e	e	T5

CHAPTER 3 CONTEXT-FREE LANGUAGES

- 1. Context Free Grammars
- 2. Pushdown Automata
- 3. Pushdown automata and context -free grammars
- 4. Languages that are and are not context- free

CHAPTER 3

PART 4: Languages that are and are not context- free

Establishing Context-freeness of Languages

The PDA Main Theorem proved the equivalency of the following two views of context -free languages

- A language L is context-free if it is generated by a context-free grammar (definition)
- 2. A language L is context-free if it is accepted by a push-down automaton

These characterizations enrich our understanding of the context-free languages since they provide two different methods for recognizing when a language is context free

Establishing Context-freeness of Languages

We examine and provide now further **tools** for establishing context-freeness of languages

We will prove some important **closure properties** of the **context free** languages **under** language **operations**, as we have done in a case of the **regular** languages

Establishing Context-freeness of Languages

We also present a **Pumping Theorem** for the **context free** languages that is similar to the **Pumping Lemmas** we have proved for the **regular** languages

The **Pumping Theorem** enables us to **show** that certain languages **are not** context-free and we will also examine some of these languages

Closure Theorems

We are going the **prove** the following theorems

Closure Theorem 1

The context-free languages are **closed** under union, concatenation, and Kleene star

Closure Theorem 2

The **intersection** of a context-free language with a regular language is a context-free language

Closure Theorem 3

The context-free languages are **not closed** under intersection and complementation

Closure Theorem 1

The context-free languages are **closed** under union, concatenation, and Kleene star

Proof

Let
$$G_1=\left(V_1\;\Sigma_1,\;R_1,\;S_1\right)$$
 and $G_2=\left(V_2\;\Sigma_2,\;R_2,\;S_2\right)$

be two CF Grammars

We assume that they have two disjoint sets of nonterminals, i.e. that $(V_1 - \Sigma_1) \cap (V_2 - \Sigma_2) = \emptyset$

Union Closure
$$G = G_1 \cup G_2$$

We construct a grammar $G = G_1 \cup G_2$ as follows

Let S be a new symbol and let

$$G = (V_1 \cup V_2 \cup \{S\}, \ \Sigma_1, \ \cup \Sigma_2, \ R, \ S)$$

We define

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

For the only rules involving S are $S \rightarrow S_1$, $S \rightarrow S_2$ we have that

$$S \overset{*}{\underset{G}{\longrightarrow}} w$$
 if and only if $S_1 \overset{*}{\underset{G}{\longrightarrow}} w$ or $S_2 \overset{*}{\underset{G}{\longrightarrow}} w$

Since G_1 and G_1 have two disjoint sets of nonterminals this is equivalent to saying that

$$w \in L(G)$$
 if and only if $w \in L(G_1)$ or $w \in L(G_1)$

and it proves that

$$L(G) = L(G_1) \cup L(G_2)$$

Concatenation $G = G_1 \circ G_2$

We construct a grammar $G = G_1 \circ G_2$ as follows

$$G = (V_1 \cup V_2 \cup \{S\}, \ \Sigma_1 \cup \Sigma_2, \ R, \ S)$$

where

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$$

For the only rule involving S is $S \to S_1S_2$ and G_1 and G_1 have two disjoint sets of nonterminals this is saying that

$$w \in L(G)$$
 if and only if $w = w_1 w_2$ for $w_1 \in L(G_1), w_2 \in L(G_2)$

It proves that

$$L(G) = L(G_1) \circ L(G_2)$$

Kleene star
$$G = G_1^*$$

We construct a grammar $G = G = G_1^*$ as follows

$$G = (V_1 \cup \{S\}, \ \Sigma_1, \ R, \ S)$$

where

$$R = R_1 \cup R_2 \cup \{S \rightarrow e, S \rightarrow SS_1\}$$

Observe that we need the rule $S \rightarrow e$ to make sure that $L(G) \neq set$

Obviouly,

$$L(G) = L(G_1)^*$$

Closure Theorems

We are going to **prove** now the following

Closure Theorem 2

The **intersection** of a context-free language with a regular language is a context-free language

Closure Theorem 2

The **intersection** of a context-free language with a regular language is a context-free language

Proof

Let R be a regular language and L a context-free language By FA and PDF **Main Theorems** we have that $L = L(M)_1$ for some **PD** automaton

$$M_1 = (K_1, \Sigma_1, \Gamma_1, \Delta_1, s_1, F_1))$$

and $R = L(M)_2$ for some **deterministic** automaton

$$M_2 = (K_2, \Sigma_2, \delta, s_2, F_2))$$

Closure Theorem 2 Proof

We construct a PD automaton M in a similar way to the **direct** construction in the proof of the **Theorem** of the **closure** of finite automata under intersection.

Namely, we define M as follows

We define $M = M_1 \cap M_2$ as

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

where

$$K=K_1\times K_2, \qquad \Gamma=\Gamma_1, \quad s=(s_1,\ s_2), \quad F=F_1\times F_2,$$

and \triangle is defined in such way that it allows the computations of M to be carried by the computations of M_1 , M_2 in **parallel** and a **word** is accepted by M only if it would be **accepted** by both M_1 and M_2

Pumping Lemma for Context Free Languages

Pumping Lemma

Pumping Lemma

Let G be a context-free grammar Then there is a number K, depending on G, such that any word $w \in L(G)$ of length greater than K can be re-written as

$$w = uvxyz$$
 for $v \neq e$ or $y \neq e$

and for any $n \ge 0$

$$uv^n xy^n z \in L(G)$$

Not Context-free Languages

We use the **Pumping Lemma** to prove the following

Theorem

The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **NOT** context-free

Proof

We carry the proof by contradiction

Assume that L is context-free, i.e. that L = L(G) for some context-free grammar G

Let K be a constant for G as specified by the **Pumping** Lemma

and let n > K/3

Not Context-free Languages

Then $w = a^n b^n c^n \in L(G)$ has a representation w = uvxyz such that $v \neq e$ or $y \neq e$ and $uv^n xy^n z \in L(G)$ for i = 0, 1, 2, 3, ...

But this is impossible

for $a^nb^nc^n = uvxyz$ and either v or y contains two symbols from $\{a,b,c\}$, then uv^2xy^2z contains a b before an a or a c before a

and if v and y each contains only a's, only b's, or only c's, then uv^2xy^2z cannot contain equal number of a's, b's, and c's

This contradiction ends the proof

Closure Theorems

Now we are ready to prove that the context-free languagaes are **not closed** under certain operations

Closure Theorem 3

The context-free languages are **not closed** under intersection and complementation

Proof

We divide the proof into proving the following two parts

Part 1

The context-free languages are **not closed** under intersection

Part 2

The context-free languages are **not closed** under complementation

Closure Theorem 3 Proof

Part 1

The context-free languages are **not closed** under intersection

Proof

Assume that the context-free languages are **are closed** under intersection

Observe that both languages

$$L_1 = \{a^n b^n c^m : m, n \ge 0\}$$
 and $L_2 = \{a^m b^n c^n : m, n \ge 0\}$

are **context-free**, so the language $L_1 \cap L_2$ must be **context-free**, but

$$L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$$

and we have proved that $L = \{a^nb^nc^n : n \ge 0\}$ is NOT context-free. **Contradiction**

Closure Properties

Part 2

The context-free languages are **not closed** under complementation

Proof

Assume that the context-free languages are **are closed** under complementation

Take any two context-free languages L_1 , L_2

Then the language

$$L_1\cap L_2=\Sigma^*-((\Sigma^*-L_1)\cup(\Sigma^*-L_2))$$

would be context-free, what **contradicts** just proved that fact that the **context-free** languages are **not closed** under intersection

Not Context-free Languages

Theorem 4

The following languages are **NOT** context-free

$$L_1 = \{a^i b^j a^i b^j : i, j \ge 0\}$$
 $L_2 = \{a^p : p \text{ is prime}\}$
 $L_3 = \{a^{n^2} : n \ge 0\}$
 $L_4 = \{www : w \in \{a, b\}^*\}$

Proof

By the **Pumping Lemma**

Power of Pumping Lemma

We use the **Pumping Lemma** to prove that many languages are not context-free

Unfortunately, there are some very simple non-context-free languages which cannot be shown not to be context-free by a direct application of the **Pumping Lemma**One such example is

 $L = \{a^m b^n : \text{ either } m > n, \text{ or } m \text{ is prime and } n \ge m\}$

We prove L to be not context-free using the following Parikh Theorem

Parikh Theorem

Parikh Theorem

If L is context-free, then $\Psi(L)$ is semilinear, where $\Psi(L)$ is a certain well defined set of n-tuples of natural numbers associated with L

Hence to prove a language to be not context -free we use Parikh Theorem in a following equivalent form

Parikh Theorem

If $\Psi(L)$ is not semilinear, then L is not context-free

Parikh Theorem

We also use **Parikh Theorem** to show the following interesting property of **contex-free** languages

Theorem 6

Every contex-free language over a one symbol alphabet is **regular**

Context-free/ NOT Context-free

Exercise

Prove that the language

$$L = \{ww: w \in \{a, b\}^*\}$$

is NOT context-free

Hint

We know that

$$L_1 = \{a^i b^j a^i b^j : \quad i, j \ge 0\}$$

is **NOT** context-free

Context-free/ NOT Context-free

Solution

Assume that
$$L = \{ww : w \in \{a, b\}^*\}$$
 is context-free Then the language
$$L \cap a^*b^*a^*b^*$$

is context-free by Closure Theorem 2 that says:

"The **intersection** of a context-free language with a regular language is a context-free language". But the language

$$\{ww: w \in \{a,b\}^*\} \cap a^*b^*a^*b^* = \{a^ib^ja^ib^j: i,j \ge 0\}$$

is NOT context-free by Theorem 5

Contradiction

Context-free/ NOT Context-free

are **NOT** context- free

We have proved by constructing a PD automaton and applying the **Main Theorem** that the language $L = \{w \in \{a,b\}^* : w \text{ has the same number of } a\text{'s and b's } \}$ is context- free

We use Pumping Lemma to prove that the languages $L = \{w \in \{a,b,c\}^* : w \text{ has the same number of } a\text{'s, b's and c's } \}$ $L = \{a^pb^n : p \in Prime, n > p\}$

◆□▶◆□▶◆□▶◆□▶ ■ め9℃