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Course Web Page
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The course webpage contains the course Lectures Slides

and a set of Chapters Video Slides

The Lectures follow the course Textbook very closely and

supplement it by providing detailed definition and explanations

of the material, additional problems with solutions,

new examples, and detailed solutions to majority of the

Textbook homework problems;

It also has a lot of previous quizzes and tests solution to

be used by students to study and learn from



Course Objectives

The main objective of the course is to introduce abstract

models of computation such as finite and push-down

automata, and analyze their relationship and relative

expressive power

We will explore the connection between abstract machine

models and formal languages, as specified by grammars

The course will enhance students’ awareness of both the

power and inherent imitations of algorithmic computation

via the study of Turing machines and/or other abstract

computational models
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CHAPTER 1
Discrete Mathematics Basics

PART 0: Basic sets of Numbers, Peano Arithmetic



Basic Sets of Numbers

Natural numbers N, Integers Z, Positive Integers Z+,
Positive Natural numbers N+, Prime Numbers P,
Rational Numbers Q, and Real numbers R

Natural Numbers N

N = {0, 1, 2, 3, . . . , . . . }

Integers Z and Positive Integers Z+

Z = { . . . , −3, −2, −1, 0, 1, 2, 3, . . . , . . . }

Z+ = { 1, 2, 3, . . . , . . . }

Positive Integers Z+ are also called Positive Natural
numbers N+ and we denote

N+ = { 1, 2, 3, . . . , . . . }



Prime Numbers

A positive integer p ∈ Z+ is called prime

if it has only two divisors, namely 1 and p

By convention, 1 is not prime

Prime Numbers P

P = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . , . . . }



Rational and Real Numbers

Rational numbers Q

Q = {
p
q
: p, q ∈ Z and q , 0 }

Real numbers R

The first rigorous definition of the set R of real
numbers was published by Cantor in 1871

Cantor’s definition (as established today in modern
terminology)

The set R Is the quotient set of the set of Cauchy
sequences of rational numbers, with two
sequences considered equivalent if their difference
converges to zero

Cantor also showed In 1874, that the set of all real
numbers is uncountably infinite, but the set of all
algebraic numbers is countably infinite



Real Numbers

The other first rigorous definition of R established
today was given by Richard Dedekind at the same
time and independent from Cantor in terms what we
call now Dedekind cuts

The concept of theDedekind cuts developed for it
became on of the very important concepts for
modern mathematics

The set of R is often called ”The Reals” - after the
name ”real numbers” first used by a French
philosopher, scientist, and mathematician Rene
Descartes (1596 -1650), also known as Renatus
Cartesius



Irrational and Algebraic Numbers

Of course we have that N ⊂ Q ⊂ R

Real numbers that are not Rational are called
Irrational numbers, i.e. we put IR = R − Q

Algebraic number is a number that is a root of a

non-zero polynomial P(x) in one variable equation
P(x) = 0 with integer (or, equivalently rational)

coefficients

All rational numbers are algebraic

Let x ∈ Q , by the definition x = a
b for any integers

a, b , 0 is the root of a non-zero polynomial
equation namely bx − a = 0



Encyclopedia Britannica

Here is what is published the Encyclopedia
Britannica

Real number in mathematics, is a quantity that can
be expressed as an infinite decimal expansion

The real numbers include the positive and negative
integers and the fractions made from those integers
(or rational numbers) andalso the irrational numbers



Natural Numbers in Encyclopedia Britannica

Here is what is published the Encyclopedia
Britannica

Natural numbers: called the counting numbers or
natural numbers 1, 2, 3, . . . . . For an empty set, no
object is present, and the count yields the number
0, which, appended to the counting numbers,
produces what are known as the whole numbers

Hence the Modern Mathematics definition is

N = {0, 2, 3, 4, ... . . . }

N = Z+ ∪ {0} = N+ ∪ {0} = whole numbers



Peano Arithmetic PA

Next to geometry, the theory of natural numbers is the

most intuitive and intuitively known of all branches of
mathematics

This is why the first attempts to formalize mathematics begin

with arithmetic of natural numbers.

The first attempt of axiomatic formalization was given by

Dedekind in 1879 and by Peano in 1889

The Peano formalization became known as

Peano Postulates and can be written as follows.



Peano Arithmetic PA

Peano Postulates (1889)

p1 0 is a natural number

p2 If n is a natural number, there is another number

which we denote by n′

We call the number n′ a successor of n and the intuitive

meaning of n′ is n + 1

p3 0 , n′, for any natural number n

p4 If n′ = m′, then n = m, for any natural numbers n, m



Peano Arithmetic PA

p5 If W is is a property that may or may not hold for

natural numbers, and

if (i) 0 has the property W and

(ii) whenever a natural number n has the property W,

then n′ has the property W,

then all natural numbers have the property W

The postulate p5 is called Principle of Induction



Peano Arithmetic PA

The Peano Postulates together with certain amount of

set theory are sufficient to develop not only theory of natural

numbers, but also theory of rational and even real numbers

But Peano Postulates can’t act as a fully formal theory as

they include intuitive notions like ”property” and

”has a property”
A formal theory of natural numbers based on the Peano

Postulates is referred in literature as Peano Arithmetic, or

simply PA

The full rigorous formalization by Mendelson (1973) is

included and worked out in the smallest details in his book

Intoduction to Mathematical Logic (1987)



Chapter 1

PART 1: Sets and Operations on Sets



Sets

Set A set is a collection of objects

Elements The objects comprising a set are are
called its elements or members

a ∈ A denotes that a is an element of a set A

a < A denotes that a is not an element of A

Empty Set is a set without elements

Empty Set is denoted by ∅



Sets

Sets can be defined by listing their elements;

Example

The set

A = {a, ∅, {a, ∅}}

has 3 elements:

a ∈ A , ∅ ∈ A , {a, ∅} ∈ A



Sets

Sets can be defined by referring to other sets and

to properties P(x) that elements may or may not
have

We write it as

B = {x ∈ A : P(x)}

Example

Let N be a set of natural numbers

B = {n ∈ N : n < 0} = ∅



Operations on Sets

Set Inclusion

A ⊆ B if and only if ∀a(a ∈ A ⇒ a ∈ B)

is a true statement

Set Equality

A = B if and only if A ⊆ B and B ⊆ A

Proper Subset

A ⊂ B if and only if A ⊆ B and A , B



Operations on Sets

Subset Notations

A ⊆ B for a subset (might be improper)

A ⊂ B for a proper subset

Power Set Set of all subsets of a given set

P(A) = {B : B ⊆ A }

Other Notation

2A = {B : B ⊆ A }



Operations on Sets

Union

A ∪ B = {x : x ∈ A or x ∈ B}

We write:

x ∈ A ∪ B if and only if x ∈ A ∪ x ∈ B

Intersection

A ∩ B = {x : x ∈ A and x ∈ B}

We write:

x ∈ A ∩ B if and only if x ∈ A ∩ x ∈ B



Operations on Sets

Relative Complement

x ∈ (A − B) if and only if x ∈ A and x < B

We write:

A − B = {x : x ∈ A ∩ x < B}

Complement is defined only for A ⊆ U, where U
is called an universe

−A = U − A

We write for x ∈ U,

x ∈ −A if and only if x < A



Operations on Sets

Algebra of sets consists of properties of sets that
are true for all sets involved

We use tautologies of propositional logic

to prove basic properties of the algebra of sets

We then use the basic properties to prove more
elaborated properties of sets



Operations on Sets

It is possible to form intersections and unions of more then

two, or even a finite number o sets

Let F denote is any collection of sets

We write
⋃
F for the set whose elements are the

elements of all of the sets in F

Example Let
F = {{a}, {∅}, {a, ∅, b}}

We get ⋃
F = {a, ∅, b}



Operations on Sets

Observe that given

F = {{a}, {∅}, {a, ∅, b}} = {A1, A2, A3}

we have that

{a} ∪ {∅} ∪ {a, ∅, b} = A1 ∪ A2 ∪ A3 = {a, ∅, b} =
⋃
F

Hence we have that for any element x,

x ∈
⋃
F if and only if there exists i, such that x ∈ Ai



Operations on Sets

We define formally

Generalized Union of any family F of sets is⋃
F = {x : exists a set S ∈ F such that x ∈ S}

We write it also as

x ∈
⋃
F if and only if ∃S∈F x ∈ S



Operations on Sets

Generalized Intersection of any family F of sets is⋂
F = {x : ∀S∈F x ∈ S}

We write

x ∈
⋂
F if and only if ∀S∈F x ∈ S



Operations on Sets

Ordered Pair

Given two sets A ,B we denote by

(a, b)

an ordered pair, where a ∈ A and b ∈ B

We call a a first coordinate of (a, b)

and b its second coordinate

We define

(a, b) = (c, d) if and only if a = c and b = d



Operations on Sets

Cartesian Product

Given two sets A and B, the set

A × B = {(a, b) : a ∈ A and b ∈ B}

is called a Cartesian (Cross) Product) of the sets A ,B

We write

(a, b) ∈ A × B if and only if a ∈ A and b ∈ B

In case when A = B, we have that

A × A = {(a, b) : a, b ∈ A }



Chapter 1

PART 2 : Relations and Functions



Binary Relations

Binary Relation

Any set R such that R ⊆ A × B

is called a binary relation defined in the Cartesian (Cross)

Product of the sets A ,B

Domain, Range of R

Given a binary relation R ⊆ A × B, the set

DR = {a ∈ A : (a, b) ∈ R}

is called a domain of the relation R

The set
VR = {b ∈ B : (a, b) ∈ R}

is called a range (set of values) of the relation R



Binary Relations

Binary Relation

Any set R such that R ⊆ A × A

is called a binary relation defined in a set A

Domain, Range of R

Given a binary relation R ⊆ A × A , the set

DR = {a ∈ A : (a, b) ∈ R}

is called a domain of the relation R

The set
VR = {b ∈ A : (a, b) ∈ R}

is called a range (set of values) of the relation R



n- ary Relations

Ordered tuple

Given sets A1, ...An, an element (a1, a2, ...an) such that
ai ∈ Ai for i = 1, 2, ...n is called an ordered tuple

Cartesian (Cross) Product of sets A1, ,An is a set

A1 × A2 × ... × An = {(a1, a2, ...an) : ai ∈ Ai , i = 1, 2, ...n}

n-ary Relation

Any set R such that R ⊆ A1 × A2 × . . . × An

is called n-ary Relation defined in the Cartesian (Cross)

Product A1 × A2 × ... × An

When A1 = A2 = ... = An = A then R ⊆ A × A . . . × A

is called n-ary Relation defined in the set A



Function as Relation

Definition

A binary relation R ⊆ A × B is a function from A to B

if and only if the following condition holds

∀a∈A ∃! b∈B (a, b) ∈ R

where ∃! b∈B means there is exactly one b ∈ B

Because the condition says that for any a ∈ A we have

exactly one b ∈ B, we write

R(a) = b for (a, b) ∈ R



Function as Relation

Given a binary relation

R ⊆ A × B

that is a function

The set A is called a domain of the function R

and we write:

R : A −→ B

to denote that the relation R is a function and say that

R maps the set A into the set B



Functions

Function notation

We denote relations that are functions by letters f, g, h,...
and write

f : A −→ B

say that the function f maps the set A into the set B

Domain, Codomain

Let f : A −→ B,

the set A is called a domain of f ,

and the set B is called a codomain of f



Functions

Range

Given a function f : A −→ B

The set
Rf = {b ∈ B : b = f(a) and a ∈ A }

is called a range of the function f

By definition, the range of f is a subset of its codomain B

We write Rf = {b ∈ B : ∃a∈A b = f(a)}

The set
f = {(a, b) ∈ A × B : b = f(a)}

is called a graph of the function f



Functions

Function ”onto”

The function f : A −→ B is an onto function

if and only if the following condition holds

∀b∈B ∃a∈A f(a) = b

We denote it by

f : A
onto
−→ B



Functions

Function ” one- to -one”

The function f : A −→ B

is called a one- to -one function and denoted by

f : A
1−1
−→ B

if and only if the following condition holds

∀x,y∈A (x , y ⇒ f(x) , f(y) )



Functions

A function f : A −→ B is not one- to -one function

if and only if the following condition holds

∃x,y∈A (x , y ∩ f(x) = f(y) )

If a function f is 1-1 and onto

we denote it as

f : A
1−1,onto
−→ B



Functions

Composition of functions

Let f and g be two functions such that

f : A −→ B and g : B −→ C

We define a new function

h : A −→ C

called a composition of functions f and g as follows:

for any x ∈ A we put

h(x) = g(f(x))



Functions

Composition notation

Given function f and g such that

f : A −→ B and g : B −→ C

We denote the composition of f and g by (f ◦ g)

in order to stress that the function

f : A −→ B

”goes first” followed by the function

g : B −→ C

with a shared set B between them



Functions

We write now the definition of composition of functions f

and g using the composition notation (name for the

composition function ) (f ◦ g) as follows

The composition (f ◦ g) is a new function

(f ◦ g) : A −→ C

such that for any x ∈ A we put

(f ◦ g)(x) = g(f(x))



Functions

There is also other notation (name) for the composition of f

and g that uses the symbol (g ◦ f), i.e. we put

(g ◦ f)(x) = g(f(x)) for all x ∈ A

This notation was invented to help calculus students to

remember the formula g(f(x)) defining the composition of

functions f and g



Functions

Inverse function

Let f : A −→ B and g : B −→ A

g is called an inverse function to f if and only if

the following condition holds

∀a∈A (f ◦ g)(a) = g(f(a)) = a

If g is an inverse function to f we denote by g = f−1



Functions

Identity function

A function I : A −→ A is called an identity on A

if and only if the following condition holds

∀a∈A I(a) = a

Inverse and Identity

Let f : A −→ B and let f−1 : B −→ A

be an inverse to f, then the following hold

(f ◦ f−1)(a) = f−1(f(a)) = I(a) = a, for all a ∈ A

(f−1 ◦ f(b)) = f(f−1(b) = I(b) = b , for all b ∈ B



Functions: Image and Inverse Image

Image

Given a function f : X −→ Y and a set A ⊆ X

The set

f [A ] = {y ∈ Y : ∃x (x ∈ A ∩ y = f(x))}

is called an image of the set A ⊆ X under the function f

We write

y ∈ f [A ] if and only if there is x ∈ A and y = f(x)

Other symbols used to denote the image are

f→(A) or f(A)



Functions: Image and Inverse Image

Inverse Image

Given a function f : X −→ Y and a set B ⊆ Y

The set
f−1[B] = {x ∈ X : f(x) ∈ B}

is called an inverse image of the set B ⊆ Y under the
function f

We write

x ∈ f−1[B] if and only if f(x) ∈ B

Other symbol used to denote the inverse image are

f−1(B) or f←(B)



Sequences

Definition

A sequence of elements of a set A is any function from
the set of natural numbers N into the set A, i.e. any function

f : N −→ A

Any f(n) = an is called n-th term of the sequence f

Notations
f = {an}n∈N , {an}n∈N , {an}



Sequences Example

Example

We define a sequence f of real numbers R as follows

f : N −→ R

such that
f(n) = n +

√
n

We also use a shorthand notation for the function f and

write it as
an = n +

√
n



Sequences Example

We often write the function f = {an} in an even shorter and

informal form as

a0 = 0, a1 = 1 + 1 = 2, a2 = 2 +
√

2.........

or even as

0, 2, 2 +
√

2, 3 +
√

3, ...........n +
√

n.........



Observations

Observation 1

By definition, sequence of elements of any set is always

infinite (countably infinite) because the domain of the

sequence function f is a set N of natural numbers

Observation 2

We can enumerate elements of a sequence by any infinite

subset of N

We usually take a set N − {0} as a sequence domain
(enumeration)



Observations

Observation 3

We can choose as a set of indexes of a sequence any

countably infinite set T, i. e, not only the set N

of natural numbers

We often choose T = N − {0} = N+, i.e we consider

sequences that ”start” with n = 1

In this case we write sequences as

a1, a2, a3, ..... an, . . . . . .



Finite Sequences

Finite Sequence

Given a finite set K = {1, 2, . . . , n}, for n ∈ N and any set
A

Any function
f : {1, 2, ...n} −→ A

is called a finite sequence of elements of the set A

of the length n

Case n=0

In this case the function f is an empty set and we call it an

empty sequence

We denote the empty sequence by e



Example

Example

Consider a sequence given by a formula

an =
n

(n − 2)(n − 5)

The domain of the function f(n) = an is the set N − {2, 5}

and the sequence f is a function

f : N − {2, 5} → R

The first elements of the sequence f are

a0 = f(0), a1 = f(1), a3 = f(3), a4 = f(4) a5 = f(5), a6 = f(6), . . .



Example

Example

Let T = {−1,−2, 3, 4} be a finite set and

f : {−1,−2, 3, 4} → R

be a function given by a formula

f(n) = an =
n

(n − 2)(n − 5)

f is a finite sequence of length 4 with elements

a−1 = f(−1), a−2 = f(−2), a3 = f(3), a4 = f(4)



Families of Sets Revisited

Family of sets

Any collection of sets is called a family of sets

We denote the family of sets by

F

Sequence of sets

Any function
f : N −→ F

is a sequence of sets, i..e a sequence where all its

elements are sets

We use capital letters to denote sets and write the sequence

of sets as
{An}n∈N



Generalized Union

Generalized Union

Given a sequence {An}n∈N of sets

We define that Generalized Union of the sequence of sets as⋃
n∈N

An = {x : ∃n∈N x ∈ An}

We write

x ∈
⋃
n∈N

An if and only if ∃n∈N x ∈ An



Generalized Intersection

Generalized Intersection

Given a sequence {An}n∈N of sets

We define that Generalized Intersection of the sequence

of sets as ⋂
n∈N

An = {x : ∀n∈N x ∈ An}

We write

x ∈
⋂
n∈N

An if and only if ∀n∈N x ∈ An



Indexed Family of Sets

Indexed Family of Sets

Given F be a family of sets

Let T , ∅ be any non empty set

Any function
f : T −→ F

is called an indexed family of sets with the set of indexes T

We write it
{At }t∈T

Notice

Any sequence of sets is an indexed family of sets for T = N



Chapter 1

Some Simple Questions and Answers



Simple Short Questions

Here are some short Yes/ No questions

Answer them and write a short justification of your answer

Q1 2{1,2} ∩ {1, 2} , ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

Q3 ∅ ∈ 2{a,b ,{a,b}}

Q4 Any function f from A , ∅ onto A , has property

f(a) , a for certain a ∈ A



Simple Short Questions

Q5 Let f : N −→ P(N) be given by a formula:

f(n) = {m ∈ N : m < n2}

then ∅ ∈ f [{0, 1, 2}]

Q6 Some relations
R ⊆ A × B

are functions that map the set A into the set B



Answers to Short Questions

Q1 2{1,2} ∩ {1, 2} , ∅

NO because

2{1,2} = {∅, {1}, {2}, {1, 2}} ∩ {1, 2} = ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES because

have that {a, b} ⊆ {a, b , {a, b}} and hence

{{a, b}} ∈ 2{a,b ,{a,b}}

by definition of the set of all subsets of a given set



Answers to Short Questions

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES other solution

We list all subsets of the set {a, b , {a, b}},

i.e. all elements of the set

2{a,b ,{a,b}}

We start as follows

{∅, {a}, {b}, {{a, b}}, . . . , . . . }

and observe that we can stop listing because we reached

the set {{a, b}}

This proves that {{a, b}} ∈ 2{a,b ,{a,b}}



Answers to Short Questions

Q3 ∅ ∈ 2{a,b ,{a,b}}

YES because for any set A, we have that ∅ ⊆ A

Q4 Any function f from A , ∅ onto A has a property

f(a) , a for certain a ∈ A

NO

Take a function such that f(a) = a for all a ∈ A

Obviously f is ”onto” and and there is no a ∈ A

for which f(a) , a



Answers to Short Questions

Q5 Let f : N −→ P(N) be given by formula:

f(n) = {m ∈ N : m < n2}, then ∅ ∈ f [{0, 1, 2}]

YES We evaluate

f(0) = {m ∈ N : m < 0} = ∅

f(1) = {m ∈ N : m < 1} = {0}

f(2) = {m ∈ N : m < 22} = {0, 1, 2, 3}

and so by definition of f [A ] get that

f [{0, 1, 2}] = {∅, {0}, {0, 1, 2, 3}} and hence ∅ ∈ f [{0, 1, 2}]

Q6 Some R ⊆ A × B are functions that map A into B

YES: Functions are special type of relations



Simple Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

Q8 For any binary relation R ⊆ A × A , the

inverse relation R−1 exists

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists



Simple Short Questions

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence



Answers to Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

NO because (a, 1) < {1, 2} × {1, 2}

Q8 For any binary relation R ⊆ A × A , the inverse

relation R−1 exists

YES By definition, the inverse relation to R ⊆ A × A is
the set

R−1 = {(b , a) : (a, b) ∈ R}

and it is a well defined relation in the set A



Answers to Short Questions

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists

NO R must be also a 1 − 1 and onto function

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

NO The set A has 3 elements and the set

B = {∅, {∅}, ∅} = {∅, {∅}}

has 2 elements and an onto function does not exists



Answers to Short Questions

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

YES The composition (f ◦ g) exists because the functions

f : A−→ B and g : B −→onto A share the same set B

The composition (g ◦ f) exists because the functions

g : B −→onto A and f : A−→ B share the same set A

The information ”onto” is irrelevant



Answers to Short Questions

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence

YES It is a sequence as the domain of the function f is

the set N of natural numbers and the formula for f(n) assigns

to each natural number n a certain subset of R, i.e.

an element of P(R)



CHAPTER 1

PART 3: Special Types of Binary Relations



Equivalence Relation

Equivalence relation

A binary relation R ⊆ A × A is an equivalence relation

defined in the set A if and only if it is reflexive, symmetric

and transitive

Symbols

We denote equivalence relation by symbols

∼, ≈ or ≡

We will use the symbol ≈ to denote the equivalence relation



Equivalence Relation

Equivalence class

Let ≈ ⊆ A × A be an equivalence relation on A

The set
E(a) = {b ∈ A : a ≈ b}

is called an equivalence class

Symbol

The equivalence classes are usually denoted by

[a] = {b ∈ A : a ≈ b}

The element a is called a representative of the equivalence
class [a] defined in A



Partitions

Partition

A family of sets P ⊆ P(A) is called a partition of the set A
if and only if the following conditions hold

1. ∀X∈P (X , ∅)
i.e. all sets in the partition are non-empty

2. ∀X ,Y∈P (X ∩ Y = ∅)
i.e. all sets in the partition are disjoint

3.
⋃

P = A
i.e union of all sets from P is the set A



Equivalence and Partitions

Notation

A/ ≈ denotes the set of all equivalence classes of the
equivalence relation ≈ , i.e.

A/ ≈ = {[a] : a ∈ A }

We prove the following theorem 1.3.1

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A



Equivalence and Partitions

Theorem 1 (full statement)

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A , i.e.

1. ∀[a]∈A/≈ ([a] , ∅)
i.e. all equivalence classes are non-empty

2. ∀[a],[b]∈A/≈ ([a] ∩ [b] = ∅)
i.e. all different equivalence classes are disjoint

3.
⋃

A/ ≈= A
i.e the union of all equivalence classes is equal to the set A



Partition and Equivalence

We also prove a following

Theorem 2

For any partition

P ⊆ P(A) of the set A

one can construct a binary relation R on A such that

R is an equivalence on A and its equivalence classes are

exactly the sets of the partition P



Partition and Equivalence

Observe that we can consider, for any binary relation R on

s set A the sets that ”look” like equivalence classes i.e. that

are defined as follows:

R(a) = {b ∈ A ; aRb} = {b ∈ A ; (a, b) ∈ R}

Fact 1

If the relation R is an equivalence on A,

then the family {R(a)}a∈A is a partition of A

Fact 2

If the family {R(a)}a∈A is not a partition of A

, then R is not an equivalence on A



Proof of Theorem 1

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A

Proof

Let A/ ≈ = {[a] : a ∈ A } = P

We must show that all sets in P are nonempty, disjoint, and

together exhaust the set A



Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as a ∈ [a] for all a ∈ A , reflexivity of equivalence
relation

2. All different equivalence classes are disjoint

Consider two different equivalence classes [a] , [b]

Assume that [a] ∩ [b] , ∅.

We have that [a] , [b], thus there is an element c

such that c ∈ [a] and c ∈ [b]

Hence (a, c) ∈ ≈ and (c, b) ∈ ≈

Since ≈ is transitive, we get (a, b) ∈ ≈



Proof of Theorem 1

Since ≈ is symmetric, we have that also (a, b) ∈ ≈

Now take any element d ∈ [a];

then (d, a) ∈ ≈, and by transitivity, (d, b) ∈ ≈

Hence d ∈ [b], so that [a] ⊆ [b]

Likewise [b] ⊆ [a] and [a] = [b] what contradicts the
assumption that [a] , [b]



Proof of Theorem 1

3. To prove that ⋃
A/ ≈ =

⋃
P = A

we simply notice that each element a ∈ A is

in some set in P

Namely we have by reflexivity that always

a ∈ [a]

This ends the proof of Theorem 1



Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be
reversed, namely that the following is also true

Theorem 2

For any partition
P ⊆ P(A)

of A , one can construct a binary relation R on A

such that R is an equivalence and its equivalence classes

are exactly the sets of the partition P

Proof

We define a binary relation R as follows

R = {(a, b) : a, b ∈ X for some X ∈ P}



Chapter 1

Some Short Questions



Short Questions

Q1 Let R ⊆ A × A for A , ∅, then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation



Short Questions

Q3 There is an equivalence relation on the set

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

Q4 Let A , ∅ be such that there are exactly

25 partitions of A

It is possible to define 20 equivalence relations on A



Short Questions Answers

Q1 Let R ⊆ A × A then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

NO The set [a] = {b ∈ A : (a, b) ∈ R} is an equivalence
class only when the relation R is an equivalence relation

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation

YES Transitivity condition is vacuously true



Short Questions Answers

Q3 There is an equivalence relation on

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

YES For example, a relation R defined by the partition

P = {{{0}}, {{0, 1}}, {1, 2}}

and so By proof of Theorem 2

R = {(a, b) : a, b ∈ X for some X ∈ P}

i.e. a = b = {0} or a = b = {0, 1} or (a = 1 and b= 2)



Short Questions Answers

Q4

Let A , ∅ be such that there are exactly 25 partitions of A

It is possible to define 2 equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as
partitions) of equivalence classes



Chapter 1

Some Long Questions



Long Questions

Q1 Consider a function f : A −→ B

Show that R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Q2 Let f : N −→ N be such that

f(n) =
{

1 if n ≤ 6
2 if n > 6

Find equivalence classes of R from Q1 for this particular
function f



Long Questions Solutions

Q1 Consider a function f : A −→ B

Show that

R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Solution

1. R is reflexive

(a, a) ∈ R for all a ∈ A because f(a) = f(a)



Long Questions Solutions

2. R is symmetric

Let (a, b) ∈ R, by definition f(a) = f(b) and f(b) = f(a)

Consequently (b , a) ∈ R

3. R is transitive

For any a, b , c ∈ A we get that f(a) = f(b) and f(b) = f(c)

implies that f(a) = f(c)



Long Questions Solutions

Q2 Let f : N −→ N be such that

f(n) =
{

1 if n ≤ 6
2 if n > 6

Find equivalence classes of

R = {(a, b) ∈ A × A : f(a) = f(b)}

for this particular f



Long Questions Solutions

Solution

We evaluate

[0] = {n ∈ N : f(0) = f(n)} = {n ∈ N : f(n) = 1}

= {n ∈ N : n ≤ 6}

[7] = {n ∈ N : f(7) = f(n)} = {n ∈ N : f(n) = 2}

= {n ∈ N : n > 6}

There are two equivalence classes:

A1 = {n ∈ N : n ≤ 6}, A2 = {n ∈ N : n > 6}
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Order Relations



Order Relations

We introduce now of another type of important binary
relations: the order relations

Definition

R ⊆ A × A is an order relation on A iff R is 1.Reflexive, 2.
Antisymmetric, and 3. Transitive, i.e. the following conditions
are satisfied

1. ∀a∈A (a, a) ∈ R

2. ∀a,b∈A ((a, b) ∈ R ∩ (b , a) ∈ R ⇒ a = b)

3. ∀a,b ,c∈A ((a, b) ∈ R ∩ (b , c) ∈ R ⇒ (a, c) ∈ R)



Order Relations

Definition

R ⊆ (A × A) is a total order on A iff R is an order and
any two elements of A are comparable, i.e. additionally the
following condition is satisfied

4. ∀a,b ∈ A ((a, b) ∈ R ∪ (b , a) ∈ R)

Names: order relation is also called historically a partial
order

total order is also called historically a linear order



Order Relations

Notations

order relations are usually denoted by ≤, or when we want to
make a clear distinction from the natural order in sets of
numbers we denote it by �

Remember, that even if we use ≤ as the order relation
symbol, it is a SYMBOL for ANY order relation and not only a
symbol for a natural order ≤ in sets of numbers



Posets

A set A , ∅ ordered by an order relation R is called a poset
We write it as a tuple (depending of sumbols used)
(A ,R), (A ,≤), (A ,�)
Name poset stands historically for ”partially ordered set”.
Diagram of order relation is a graphical representation of a
poset
It is a simplified graph constructed as follows.
1. As the order relation is reflexive, i.e. (a, a) ∈ R for all
a ∈ A , we draw a point with symbol a instead of a point with
symbol a and the loop
2. As the order relation is antisymmetric we draw a point b
above point a (connected, but without the arrow) to indicate
that (a, b) ∈ R.
3. As the order relation in transitive, we connect points a, b , c
without arrows



Posets Special Elements

Special elements in a poset (A ,≤) are: maximal, minimal,
greatest (largest) and smallest (least) and are defined below.

Smallest (least) a0 ∈ A is a smallest (least) element in the
poset (A ,≤) iff ∀a∈A (a0 ≤ a)

Greatest (largest) a0 ∈ A is a greatest (largest) element in
the poset (A ,≤) iff ∀a∈A (a ≤ a0)



Posets Special Elements

Maximal (formal) a0 ∈ A is a maximal element in the poset
(A ,≤) iff ¬ ∃a∈A (a0 ≤ a ∩ a0 , a)

Maximal (informal) a0 ∈ A is a maximal element in the
poset (A ,≤) iff on a diagram of (A ,≤) there is no element
placed above a0

Minimal (formal) a0 ∈ A is a minimal element in the poset
(A ,≤) iff ¬ ∃a∈A (a ≤ a0 ∩ a0 , a)

Minimal (informal) a0 ∈ A is a minimal element in the poset
(A ,≤) iff on the diagram of (A ,≤) there is no element
placed below a0



Some Properties of Posets

Use Mathematical Induction to prove the following property
of finite posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A ,≤) be a finite, not empty poset (partially ordered set
by ≤ , such that A has n-elements, i.e. |A | = n

We carry the Mathematical Induction over n ∈ N − {0}

Reminder: an element ao ∈ A ia a maximal element in a
poset (A ,≤) iff the following is true.

¬∃a∈A (a0 , a ∩ a0 ≤ a)



Inductive Proof

Base case: n = 1, so A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a},≤)

Inductive step: Assume that any set A such that |A | = n has
a maximal element;

Denote by a0 the maximal element in (A ,≤)

Let B be a set with n + 1 elements; i.e. we can write B as

B = A ∪ {b0} for b0 < A , for some A with n elements



Inductive Proof

By Inductive Assumption the poset (A ,≤) has a maximal
element a0

To show that (B ,≤) has a maximal element we need to
consider 3 cases.

1. b0 ≤ a0; in this case a0 is also a maximal element in
(B ,≤)

2. a0 ≤ b0; in this case b0 is a new maximal in (B ,≤)

3. a0, b0 are not compatible; in this case a0 remains
maximal in (B ,≤)

By Mathematical Induction we have proved that

∀n∈∈N−{0}(|A | = n ⇒ A has a maximal element)



Some Properties of Posets

We just proved

Property 1 Every non-empty finite poset has at least one
maximal element

Show that the Property 1 is not true for an infinite set

Solution: Consider a poset (Z ,≤), where Z is the set on
integers and ≤ is a natural order on Z . Obviously no maximal
element!

Exercise: Prove

Property 2 Every non-empty finite poset has at least one
minimal element

Show that the Property 2 is not true for an infinite set


