$\begin{array}{ccc} \text{CSE303} & \text{PRACTICE Q1} & \text{SOLUTIONS} \\ & \text{Spring 2012} \end{array}$

PART 1: Yes/No Questions

1.	$\{\emptyset\} \subseteq \{a,b,c\}$	
	Justify : $\emptyset \notin \{a, b, c\}$	\mathbf{n}
2.	Set A is countable iff $N \subseteq A$ (N is the set of natural numbers).	
	Justify : $A = \{\emptyset\}$ is countable (finite), but N is not a subset of $\{\emptyset\}$,	
	i.e. $N \not\subseteq \{\emptyset\}$.	
	In fact A can be ANY finite set, or any infinite set that does not	
	include N, for example $A = \{\{n\} : n \in N\}.$	
	In this case $ A = N $, but N is not a subset of A, i.e. $N \nsubseteq A$.	\mathbf{n}
3.	2^N is infinitely countable.	
	Justify : $ 2^N = R = \mathcal{C}$ and R are uncountable.	\mathbf{n}
4.	Let $A = \{ \{n\} \in 2^N : n^2 + 1 \le 15 \}$. A is infinite.	
	Justify : $\{n \in N : n^2 + 1 \le 15\} = \{0, 1, 2, 3\},\$	
	hence $A = \{\{0\}, \{1\}, \{2\}, \{3\}\}\$ is a finite set.	\mathbf{n}
5.	Let $\Sigma = \{a\}$. There are countably many languages over Σ .	
	Justify : There is any many languages as subsets of Σ^{\star} , i.e. uncount-	
	ably many and exactly as many as real numbers.	\mathbf{n}
6.	For any $L, L^+ = L^* - \{e\}.$	
	Justify : Only when $e \notin L$.	\mathbf{n}
7.	$L^* = \{w_1w_n : w_i \in L, i = 1, 2,n, n \ge 1\}.$	
	Justify: $n \geq 0$.	\mathbf{n}
8.	For any language L over an alphabet Σ , $L^+ = L \cup L^*$.	
	Justify : Take L such that $e \notin L$. We get that $e \in L \cup L^*$ as $e \in L^*$	
	and $e \notin L^+$.	\mathbf{n}

PART 2: PROBLEMS

QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution: By definition, $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence

$$(L_1\Sigma^{\star}L_2)\subseteq\Sigma^{\star}$$
.

Now we use the following property:

Property For any languages $L_1.L_2$,

if $L_1 \subseteq L_2$, then ${L_1}^* \subseteq {L_2}^*$

and obtain that

$$(L_1\Sigma^*L_2)^*\subseteq {\Sigma^*}^*=\Sigma^*.$$

We have to show that also

$$\Sigma^* \subseteq (L_1 \Sigma^* L_2)^*$$
.

Let $w \in \Sigma^*$ we have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$.

- **QUESTION 2** Let \mathcal{L} be a function that associates with any regular expression α the regular language $\mathcal{L}(\alpha)$.
- **1.** Evaluate $\mathcal{L}(((a \cup b)^*a))$.

Solution:
$$\mathcal{L}(((a \cup b)^* a)) = \mathcal{L}((a \cup b)^*) \mathcal{L}(a) = (\mathcal{L}(a \cup b))^* \{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^* \{a\} = (\{a\} \cup \{b\})^* \{a\} = \{a,b\}^* \{a\}.$$

2. Describe a property that defines the language $\mathcal{L}(((a \cup b)^*a))$.

Solution $\{a,b\}^*\{a\} = \Sigma^*\{a\} = \{w \in \{a,b\}^* : w \text{ ends with } a\}.$

QUESTION 3 Let $\Sigma = \{a, b\}$. Let $L_1 \subseteq \Sigma^*$ be defined as follows:

 $L_1 = \{ w \in \Sigma^* : \text{ number of } b \text{ in } w \text{ is divisible three} \}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L_1$. You can use shorthand notation. Explain shortly your answer.

Solution:

$$\alpha = a^{\star}(a^{\star}ba^{\star}ba^{\star}ba^{\star})^{\star} = a^{\star}(ba^{\star}ba^{\star}ba^{\star})^{\star}.$$

Explanation: the part $a^*ba^*ba^*ba^*$ says that there must be 3 occurrences of b in L_1 . The part $(a^*ba^*ba^*ba^*)^*$ says that we the number of b's is 3n for $n \ge 1$.

Observe that 0 is divisible by 3, so we need to add the case of 0 number of b's (n = 0), i.e. words e, a, aa, aaa, \ldots We do so by concatenating $(a^*ba^*ba^*ba^*)^*$ with a^* .