CSE303 2018 PRACTICE MIDTERM SOLUTIONS

1 YES/NO questions

1.	For any binary relation $R \subseteq A \times A$, R^* exists. Justify : definition	у
2.	For any binary relation $R \subseteq A \times A$, R^{-1} exists. Justify : The set $R^{-1} = \{(b, a) : (a, b) \in R\}$ always exists.	У
3.	For any function f from $A \neq \emptyset$ onto A , f has property $f(a) \neq a$ for certain $a \in A$. Justify : $f(x) = x$ is always "onto".	n
4.	All infinite sets have the same cardinality. Justify : $ N < 2^N $ by Cantor Theorem and $N, 2^N$ are infinite	n
5.	Set A is uncountable iff $R \subseteq A$ (R is the set of real numbers). Justify : $R, 2^R$ are both uncountable and R is not a subset of 2^R ($R \not\subseteq 2^R$) but $R \in 2^R$.	n
6.	Let $A \neq \emptyset$ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence relations on A.	
7.	Justify : one can define up to 25 (as many as partitions) of equivalence classes There is a relation that is equivalence and <i>order</i> at the same time.	y
	Justify: equality relation	\mathbf{y}
8.	Let $A = \{n \in \mathbb{N} : n^2 + 1 \le 15\}$. It is possible to define 8 alphabets $\Sigma \subseteq A$. Justify : A has 4 elements, so we have $2^4 > 8$ subsets	\mathbf{y}
9.	There is exactly as many languages over alphabet $\Sigma = \{a\}$ as real numbers. Justify : $ \Sigma^* = \aleph_0, 2^{\Sigma^*} = R = C$.	y
10.	Let $\Sigma = \{a, b\}$. There are more than 20 words of length 4 over Σ . Justify : There are exactly $2^4 = 16$ words of length 4 over Σ and $16 < 20$.	\mathbf{n}
11.	$L^* = \{w_1w_n : w_i \in L, i = 1, 2,n, n \ge 1\}.$ Justify: $n \ge 0$.	n
	$L^+ = LL^*.$	
	Justify : the problem is only with cases $e \in L$ or $e \notin L$. When $e \in L$, then $e \in L^+$, and always $e \in L^*$, hence $e \in LL^*$.	
19	When $e \notin L$, then $e \notin L^+$, and always $e \in L^*$, hence $e \in LL^*$ and $L^+ \neq LL^*$ $L^+ = L^* - \{e\}$.	n
14.	Justify : only when $e \notin L$. When $e \in L$ we get that $e \in L^+$ and $e \notin L^* - \{e\}$.	n

- 13. If $L = \{w \in \{0, 1\}^* : w \text{ has an unequal number of 0's and 1's }\}$, then $L^* = \{0, 1\}^*$. **Justify**: $1 \in L, 0 \in L$ so $\{0, 1\} \subseteq L \subseteq \Sigma^*$, hence $\{0, 1\}^* \subseteq L^* \subseteq (\Sigma^*)^* = \Sigma^* = \{0, 1\}^*$ and $L^* = \{0, 1\}^*$.
- 14. For any languages L_1 , L_2 , $(L_1 \cup L_2) \cap L_1 = L_1$. **Justify:** languages are sets and $(A \cup B) \cap A = A$.
- 15. For any languages L_1 , L_2 ,

$$L_1^* = L_2^* \quad iff \quad L_1 = L_2$$

Justify: Consider $L_1 = \{a, e\}, L_2 = \{a\}$. Obviously, $L_1 \neq L_2$ and $L_1^* = L_2^*$.

 \mathbf{n}

 \mathbf{y}

 \mathbf{n}

- 16. For any languages $L_1, L_2, (L_1 \cup L_2)^* = L_1^*$.
 - **Justify**: languages are sets so it is true only when $L_1 \subseteq L_2$.
- 17. $((\emptyset^* \cap a) \cup b^*) \cap \emptyset^*$ describes a language with only one element.

Justify:
$$\emptyset \cup b^* = b^*, b^* \cap \{e\} = \{e\}$$

18. $((\emptyset^* \cap a) \cup b^*) \cap a^*$ is a finite regular language.

Justify:
$$b^* \cap a^* = \{e\} = \emptyset^*$$

19. $(\{a\} \cup \{e\}) \cap \{ab\}^*$ is a finite regular language.

Justify:
$$(\{a\} \cup \{e\}) \cap \{ab\}^* = \{a, e\} \cap \{ab\}^* = \{e\} = \emptyset^*$$
 y

20. Any regular language has a finite description.

Justify: by definition
$$L = \mathcal{L}(r)$$
 and r is a finite string.

21. Any finite language is regular.

Justify:
$$L = \{w_1\} \cup ... \cup \{w_1\}$$
 and $\{w_i\}$ has a finite description w_i

22. Every deterministic automata is also non-deterministic.

Justify:
$$K \times \Sigma \subseteq K \times \Sigma \cup \{e\} \subseteq \Sigma^*$$
 and any function is a relation **y**

The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: $K \neq \emptyset$, because $s \in K$. If $\Sigma = \emptyset$ the set of all configuration of non-deterministic automata (book definition) is a subset of $K \times \emptyset \cup \{e\} \neq \emptyset$ as it always contains (s,e). For the lecture definition, the set of all configuration is a subset of $K \times \Sigma^*$ and always $e \in \Sigma^*$ hence always $(s,e) \in K \times \Sigma^*$

23. Let M be a finite state automaton, $L(M) = \{w \in \Sigma^* : (q, w) \xrightarrow{*, M} (s, e)\}.$

Justify:
$$L(M) = \{ w \in \Sigma^* : \exists q \in F((s, w) \xrightarrow{*, M} (q, e)) \}$$

24. For any automata M, $L(M) \neq \emptyset$.

Justify: if
$$F = \emptyset$$
, $L(M) = \emptyset$

25. $L(M_1) = L(M_2)$ iff M_1 , M_2 are deterministic.

Justify: Let M_1 be an automata over $\{a,b\}$ with with $\Delta = \{(q_0,ab,q_0)\}, F = \{q_0\}, s = q_0$ and let M_2 be an automata over $\{a,b\}$ with with $\Delta = \{(q_0,ab,q_0),(q_0,e,q_1)\}, F = \{q_1\}, s = q_0$. $L(M_1) = L(M_2) = (ab)^*$ and both are non-deterministic

26. DFA and NDFA compute the same class of languages.

Justify: basic theorem

 \mathbf{y}

27. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$

Justify: the class of finite automata is closed under $*, \cup, -, \cap$

 \mathbf{y}

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

2 Problems

Problem 1 Let L be a language defines as follows

 $L = \{w \in \{a, b\}^* : every \ a \ is \ either \ immediately \ proceeded \ or \ followed \ by \ b\}.$

1. Describe a regular expression r such that $\mathcal{L}(r) = L$ (Meaning of r is L).

Solution $L = (b \cup ab \cup ba \cup bab)^*$

2. Construct a finite state automata M, such that L(M) = L.

Solution

Components of M are:

$$K = \{s\}, \{a,b\}, \quad s, \quad F = \{s\},$$

$$\Delta = \{(s,b,s), (s,ab,s), (s,ba,s), (s,bab,s).\}$$

Some elements of L(M) are: b, bb, baab, abab, abbba, bbbabbbabbabbabb

Problem 2

1. Let $M=(K,\Sigma,\delta,s,F)$ be a deterministic finite automaton. Under exactly what conditions $e\in L(M)$?

Solution

$$e \in L(M)$$
 iff $s \in F$.

2. Let $M = (K, \Sigma, \Delta, s, F)$ be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

Solution Now we have two possibilities: $s \in F$ (computation of length 0) or there is a computation of length > 0 from (s, e) to (q, e) for $q \in F$ when $s \notin F$.

Problem 3 Let

$$M = (K, \Sigma, s, \Delta, F)$$

for
$$K = \{q_0, q_1, q_2, q_3\}$$
, $s = q_0$
 $\Sigma = \{a, b\}$, $F = \{q_1, q_2, q_3\}$ and

$$\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}$$

1. List some elements of L(M).

Solution a, b, aa, bb, aba, abbba

2. Write a regular expression for the language accepted by M. Simplify the solution.

Solution

$$L(M) = ab^* \cup ab^*a \cup ba^* \cup ba^*b = ab^*(e \cup a) \cup ba^*(e \cup b).$$

3. Define a deterministic M' such that $M \approx M'$, i.e. L(M) = L(M').

Solution We complete M do a deterministic M' by adding a TRAP state q_4 and put

$$\Delta' = \delta = \Delta \cup \{(q_2, a, q_4), (q_2, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}$$

Justify why $M \approx M'$.

Solution q_4 is a trap state, it does not influence L(M).

Problem 4 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for
$$K = \{q_0, q_1, q_2, q_3, \}$$
, $s = q_0$
 $\Sigma = \{a, b, c\}$, $F = \{q_0, q_2, q_3\}$ and

$$\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, e, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}.$$

Find the regular expression describing the L(M). Explain your steps. Does $e \in L(M)$?

Solution

$$L = \alpha_1 \cup \alpha_2 \cup \alpha_3 \cup \alpha_4$$

where

$$\alpha_1 = (abc)^*$$
 - loop on q_0 ,

$$\alpha_2 = (abc)^* a(bc)^* ba^*$$
 - path from q_0 to q_2 ,

$$\alpha_3 = (abc)^* a(bc)^* ba^* ba^*$$
 - path from q_0 to q_3 via q_2 ,

$$\alpha_3 = (abc)^*a^*$$
 - path from q_0 directly to q_3

This is not the only solution.

Observe that $e \in L$ as $q_0 \in F$ and also $(q_0, e, q_3) \in \Delta$ and $q_3 \in F$.

This is not the only solution.

Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the **BOOK definition**.

Solution

Solution We apply the "stretching" technique to M and the new M' is is as follows.

$$M' = (K \cup \{p_1, p_2, p_3\} \ \Sigma, \ s = q_0, \ \Delta', \ F' = F \)$$
 for $K = \{q_0, q_1, q_2\}, \ s = q_0$
$$\Sigma = \{a, b\}, \ F = \{q_0, q_2, q_3\} \ \text{and}$$

$$\Delta' = \{(q_0, a, q_1), (q_0, e, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}$$

 $\cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\}.$

Problem 5 For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for
$$K = \{q_0, q_1, q_2, q_3\}$$
, $s = q_0$
 $\Sigma = \{a, b\}$, $F = \{q_2\}$ and
$$\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}$$

Write 2 steps of the general method of transformation the NDFA M defined above into an equivalent DFA M'.

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step 2: Evaluate δ on all states that result from step 1.

Reminder:
$$E(q) = \{ p \in K : (q, e) \xrightarrow{*, M} (p, e) \}$$
 and
$$\delta(Q, \sigma) = \bigcup \{ E(p) : \exists q \in Q, \ (q, \sigma, p) \in \Delta \}.$$

$$\delta(Q,\sigma) = \bigcup \{E(p) : \exists q \in Q, \ (q,\sigma,p) \in \Delta\}$$

Solution Step 1: First we need to evaluate E(q), for all $q \in K$.

$$E(q_0) = \{q_0, q_1, q_3\} = S, \ E(q_1) = \{q_1\}, \ E(q_2) = \{q_2q_3\} \in F, \ E(q_3) = \{q_3\}$$

$$\delta(E(q_0),a) = \delta(\{q_0,q_1,q_3\},a) = E(q_3) \cup E(q_2) \cup \emptyset = \{q_2,q_3\} \in F$$

$$\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_1) \cup \emptyset \cup \emptyset = \{q_1\}$$

Solution Step 2:

$$\delta(\{q_2, q_3\}, a) = \emptyset \cup \emptyset = \emptyset$$

$$\delta(\{q_2, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\}$$

$$\delta(\{q_1\}, a) = E(q_2) = \{q_2, q_3\} \in F$$

$$\delta(\{q_1\},b) = \emptyset$$