CSE303 PRACTICE MIDTERM Spring 2018 (15 extra pts)

NAME

ID:

MY POINTS ARE:

TAKE test as a practice - and **correct it yourself** to see how much points you would get.

Solutions to all problems and questions are somewhere on our webpage! so you CAN correct yourselfbut do it **ONLY AFTER you complete it all by yourself**.

This is the goal of the PRACTICE TEST!

- PLEASE SUBMIT your SOLUTIONS that have been CORRECTED BY YOU Write corrections in RED. You WILL GET 15 points for THAT! even if all problems you solved were first wrong- and then CORRECTED!
- Write a sum of POINTS you give yourself for your solutions -after you check your answers for corrections.
- The **real midterm will have less problems**; I will make sure you will be able to complete it within 1 hour and 15 minutes.

BRING YOUR solved-corrected TEST to class on Monday, March 19

I WILL POST THE SOLUTIONS on MONDAY for you to STUDY for MIDTERM

MIDTERM is March 21

I will NOT ACCEPT SOLUTIONS after MONDAY, March 19

1 YES/NO questions

Circle the correct answer (each question is worth 1pt) Write SHORT justification.

- 1. For any function f from $A \neq \emptyset$ onto A, f has property $f(a) \neq a$ for certain $a \in A$. Justify:
- 2. For any binary relation $R \subseteq A \times A$, R^{-1} exists. Justify:
- 3. All infinite sets have the same cardinality. **Justify**:
- 4. Set A is uncountable iff $R \subseteq A$ (R is the set of *real* numbers). Justify:

y n

y n

y n

y n

5.	Let $A \neq \emptyset$ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence relations on A. Justify:		
		У	n
6.	There is a relation that is equivalence and <i>order</i> at the same time. Justify:		
	Sustry.	У	n
7.	Let $A = \{n \in N : n^2 + 1 \le 15\}$. It is possible to define 8 alphabets $\Sigma \subseteq A$.		
	Justify:	у	n
8.	There is exactly as many languages over alphabet $\Sigma = \{a\}$ as real numbers.	J	
0.	Justify:		
		у	n
9.	Let $\Sigma = \{a, b\}$. There are more than 20 words of length 4 over Σ . Justify:		
		У	n
10.	$L^* = \{w_1 w_n : w_i \in L, i = 1, 2, n, n \ge 1\}.$		
	Justify:	у	n
11.	$L^+ = LL^*.$		
	Justify:	37	n
10	$I^+ I^* (.)$	У	n
12.	$L^+ = L^* - \{e\}.$ Justify:		
		У	n
13.	If $L = \{w \in \{0, 1\}^* : w \text{ has an unequal number of 0's and 1's }, \text{ then } L^* = \{0, 1\}^*.$ Justify:		
	Justiny.	У	\mathbf{n}
14.	For any languages $L_1, L_2,$		
	$L_1^* = L_2^* \;\; iff \;\; L_1 = L_2$		
	Justify:		
		У	\mathbf{n}
15.	For any languages L_1 , L_2 , $(L_1 \cup L_2) \cap L_1 = L_1$.		
	Justify:	У	\mathbf{n}
16.	For any languages $L_1, L_2, (L_1 \cup L_2)^* = L_1^*$.		
	Justify:	у	n
17	$((\emptyset^* \cap a) \cup b^*) \cap \emptyset^*$ describes a language with only one element.	y	11
11.	$((\psi + ia) \cup \psi) + \psi$ describes a language with only one element. Justify:		
		у	n

1	8. $((\emptyset^* \cap a) \cup b^*) \cap a^*$ is a finite regular language. Justify:		
1	9. $(\{a\} \cup \{e\}) \cap \{ab\}^*$ is a finite regular language.	у	n
	Justify:	у	n
2	0. Any regular language has a finite description. Justify:	у	n
2	1. Any finite language is regular. Justify:		
0		у	n
2	2. Every deterministic automaton is also non-deterministic. Justify:	у	n
2	3. The set of all configurations of a given finite state automaton is always non-empty. Justify :	•	n
2	4. Let M be a finite state automaton, $L(M) = \{ \omega \in \Sigma^* : (q, \omega) \xrightarrow{*, M} (s, e) \}.$ Justify:	У	n
2	5. For any automaton M , $L(M) \neq \emptyset$.	у	n
	Justify:	у	n
2	6. $L(M_1) = L(M_2)$ iff M_1, M_2 are deterministic. Justify:	у	n
2	7. DFA and NDFA compute the same class of languages. Justify:	U	
2	8. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then	у	n
	there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$ Justify:	у	n

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

- **BOOK DEFINITION:** $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when $\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$. OBSERVE that Δ is always finite because K, Σ are finite sets.
- **LECTURE DEFINITION:** $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and $\Delta \subseteq K \times \Sigma^* \times K$.

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

 ${\bf SOLVING\ PROBLEMS}$ you can use any of these definitions.

2 Problems

PROBLEM 1 (10 pts)

Let L be a language defines as follows

 $L = \{w \in \{a, b\}^* : every \ a \ is \ either \ immediately \ proceeded \ or \ followed \ by \ b\}.$

1. Describe a regular expression r such that $\mathcal{L}(r) = L$. Explain shortly your solution.

2. Construct a finite state automata M, such that L(M) = L.

State Diagram of M is:

Some elements of L(M) as defined by the state diagram are:

Components of M are:

PROBLEM 2 (6 pts)

1. Let M be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

2. Let M be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

PROBLEM 3 (16 pts) Let

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}, s = q_0, \Sigma = \{ab\}, F = \{q_1, q_2, q_3\}, and$
$$\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}$$

1 Draw the State Diagram of M.

2. List few elements of L(M).

3. Write a regular expression for the language accepted by M. Explain and simplify the solution.

4. Define a deterministic M' such that $M \approx M'$, i.e. L(M) = L(M'). State Diagram of M' is:

Justify why $M \approx M'$.

PROBLEM 4 (15 pts)

Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

 $\begin{array}{l} \text{for} \quad K = \{q_0, q_1, q_2, q_3, \}, \ s = q_0 \\ \Sigma = \{a, b, c\}, \quad F = \{q_0, q_2, q_3\} \text{ and} \\ \Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, e, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}. \end{array}$

1. Draw the State Diagram of M.

2. Find the regular expression describing the L(M). Simplify it as much as you can. Explain your steps. Does $e \in L(M)$?

3. Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the **BOOK definition**.

PROBLEM 5 (15 pts.) For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

 $\begin{array}{ll} \text{for} & K = \{q_0, q_1, q_2, q_3\}, \ s = q_0 \\ \Sigma = \{a. b\}, \ F = \{q_2\} \ \text{and} \end{array}$

 $\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}$

- **1.** Draw the State Diagram of M.
- 2. Write 2 steps of the general method of transformation a NDFA M, into an equivalent M', which is a DFA, where M is given by a following state diagram.

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step 2: Evaluate δ on all states that result from step 1.

<u>Reminder</u>: $E(q) = \{ p \in K : (q, e) \xrightarrow{*, M} (p, e) \}$ and

$$\delta(Q,\sigma) = \bigcup \{ E(p) : \exists q \in Q, \ (q,\sigma,p) \in \Delta \}.$$

EXTRA SPACE