CSE303 PRACTICE FINAL SOLUTIONS

1 YES/NO questions

Circle the correct answer (each question is worth 1pt) Write SHORT justification.

 2. (ab ∪ a*b)* is a regular language Justify: this is a regular expression, not a language 3. There are uncountably many languages over Σ = {a}. Justify: {a}* = ℵ₀ and 2^{(a)*} = c and any set of cardinality c is uncountable. 4. L* = {w ∈ Σ* : ∃_{q∈E}(s, w) +[*]_M (q, e)}. Justify: this is definition of L(M), not L* 5. L* = {w⁺ - {e}. Justify: only when e ∉ L 6. L* = {w₁w_n, w_i ∈ L, i = 1,, n}. Justify: i = 0, 1,, n} 7. ((φ* ∩ a) ∪ (φ ∪ b*)) ∩ φ* represents a language L = {e}. Justify: (({e}) ∩ {a})) ∪ {b}*) ∩ {e} = {b}* ∩ {e} = {e} 8. If M is a FA, then L(M) ≠ φ. Justify: take M with Σ = φ 9. L(M₁) = L(M₂) iff M₁ and M₂ are finite automata. Justify: take as M₁ any automata such that L(M₁) ≠ φ and M₂ such that L(M₂) = φ 10. A language is regular if and only if L = L(M) and M is a finite automaton Justify: FA is a PDA operating on an empty stock 9. ((p, e, β), (q, γ)) ∈ Δ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack 	1.	A is uncountable iff $ A = \mathbf{c}$ (continuum). Justify : 2^R , R real numbers, is uncountable and $ 2^R > R $	n
3. There are uncountably many languages over $\Sigma = \{a\}$. Justify: $ \{a\}^* = \aleph_0$ and $ 2^{\{a\}^*} = c$ and any set of cardinality c is uncountable. 4. $L^* = \{w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash_M^*(q, e)\}$. Justify: this is definition of $L(M)$, not L^* 5. $L^* = L^+ - \{e\}$. Justify: only when $e \notin L$ 6. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}$. Justify: $i = 0, 1, \dots, n$ 7. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$. Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$ 9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify: take M with $\Sigma = \phi$ 10. A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify: Main Theorem 9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify: There is a PDA M such that $L = L(M)$. Justify: FA is a PDA operating on an empty stock 9. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	2.	$(ab \cup a^*b)^*$ is a regular language Justify : this is a regular expression, not a language	n
4. $L^* = \{w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash_M^* (q, e)\}.$ Justify: this is definition of $L(M)$, not L^* 5. $L^* = L^+ - \{e\}.$ Justify: only when $e \notin L$ 6. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}.$ Justify: $i = 0, 1, \dots, n\}$ 7. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}.$ Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$ 8. If M is a FA, then $L(M) \neq \phi$. Justify: take M with $\Sigma = \phi$ 9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify: take as M_1 any automata such that $L(M_1) \neq \phi$ and M_2 such that $L(M_2) = \phi$ 10. A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify: Main Theorem 9. $L(M_1) = L(M_2)$ iff M_1 and operating on an empty stock 9. Y 11. If L is regular, there is a PDA M such that $L = L(M)$. Justify: FA is a PDA operating on an empty stock 9. Y 12. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	3.	There are uncountably many languages over $\Sigma = \{a\}$. Justify : $ \{a\}^* = \aleph_0$ and $ 2^{\{a\}^*} = \mathbf{c}$ and any set of cardinality \mathbf{c} is uncountable.	v
5. $L^* = L^+ - \{e\}$. Justify: only when $e \notin L$ 5. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}$. Justify: $i = 0, 1, \dots, n\}$ 7. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$. Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$ 8. If M is a FA, then $L(M) \neq \phi$. Justify: take M with $\Sigma = \phi$ 9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify: take as M_1 any automata such that $L(M_1) \neq \phi$ and M_2 such that $L(M_2) = \phi$ 10. A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify: Main Theorem 9. I . If L is regular, there is a PDA M such that $L = L(M)$. Justify: FA is a PDA operating on an empty stock 9. Y 12. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	4.	$L^* = \{ w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash^*_M (q, e) \}.$ Justify : this is definition of $L(M)$, not L^*	y
y 6. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}$. Justify: $i = 0, 1, \dots, n\}$ 7. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$. Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$ y 8. If M is a FA, then $L(M) \neq \phi$. Justify: take M with $\Sigma = \phi$ 9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify: take as M_1 any automata such that $L(M_1) \neq \phi$ and M_2 such that $L(M_2) = \phi$ 10. A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify: Main Theorem y 11. If L is regular, there is a PDA M such that $L = L(M)$. Justify: FA is a PDA operating on an empty stock y 12. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	5.	$L^* = L^+ - \{e\}.$ Justify: only when $e \notin L$	
10. A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify: Main Theorem 10. A language is regular, there is a PDA M such that $L = L(M)$. Justify: $((q, q, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	6.	$L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}.$ Justify: $i = 0, 1, \dots, n\}$	У
 y 8. If M is a FA, then L(M) ≠ φ. Justify: take M with Σ = φ 9. L(M₁) = L(M₂) iff M₁ and M₂ are finite automata. Justify: take as M₁ any automata such that L(M₁) ≠ φ and M₂ such that L(M₂) = φ 10. A language is regular if and only if L = L(M) and M is a finite automaton Justify: Main Theorem y 11. If L is regular, there is a PDA M such that L = L(M). Justify: FA is a PDA operating on an empty stock y 12. ((p, e, β), (q, γ)) ∈ Δ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack 	7.	$((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^* \text{ represents a language } L = \{e\}.$ Justify : $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$	n
 n 9. L(M₁) = L(M₂) iff M₁ and M₂ are finite automata. Justify: take as M₁ any automata such that L(M₁) ≠ φ and M₂ such that L(M₂) = φ n 10. A language is regular if and only if L = L(M) and M is a finite automaton Justify: Main Theorem Y 11. If L is regular, there is a PDA M such that L = L(M). Justify: FA is a PDA operating on an empty stock Y 12. ((p, e, β), (q, γ)) ∈ Δ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack 	8.	If M is a FA, then $L(M) \neq \phi$. Justify: take M with $\Sigma = \phi$	У
 n 10. A language is regular if and only if L = L(M) and M is a finite automaton Justify: Main Theorem y 11. If L is regular, there is a PDA M such that L = L(M). Justify: FA is a PDA operating on an empty stock y 12. ((p, e, β), (q, γ)) ∈ Δ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack 	9.	$L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify : take as M_1 any automata such that $L(M_1) \neq \phi$ and M_2 such that $L(M_2) = \phi$	n
y 11. If L is regular, there is a PDA M such that $L = L(M)$. Justify : FA is a PDA operating on an empty stock y 12. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify : and replace β by γ on the top of the stack	10.	A language is regular if and only if $L = L(M)$ and M is a finite automaton Justify : Main Theorem	n
 Y 12. ((p, e, β), (q, γ)) ∈ Δ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack 	11.	If L is regular, there is a PDA M such that $L = L(M)$. Justify: FA is a PDA operating on an empty stock	У
	12.	$((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: and replace β by γ on the top of the stack	У

 \mathbf{n}

13.	Every subset of a regular language is a language. Justify : subset of a set is a set and languages are sets	•••
14.	Any finite language is CF. Justify : any finite language is regular and $RL \subset CFL$	y y
15.	Intersection of any two regular languages is CF language. Justify : Regular languages are closed under intersection and $RL \subset CFL$	у
16.	Union of a regular and a CF language is a CF language. Justify : $RL \subseteq CFL$ and FCL are closed under union	V
17.	If L is regular, there is a CF grammar G, such that $L = L(G)$. Justify: $RL \subseteq CFL$	v
18.	$L = \{a^n b^n c^n : n \ge 0\}$ is CF. Justify : is not CF, as proved by Pumping Lemma for CF languages	J n
19.	$L = \{a^n b^n : n \ge 0\} \text{ is CF.}$ Justify: $L = L(G)$ for G with $R = \{S \to aSb e\}$	у
20.	Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*, w^R = w$ Justify : $a^R = a$ and $w^R = w$ for $w \in \{a\}^*$	V
21.	Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \to SS \mid (S)\}$. $L(G)$ is regular. Justify : $L(G) = \emptyset$ and hence regular	v
22.	$L = \{a^n b^m c^n : n, m \in N\} \text{ is CF.}$ Justify: construct a gramma with rules: $S \to aSc \mid b \mid B \mid e$, and $B \to b \mid e$	J
23.	If L is regular, then there is a CF grammar G, such that $L = L(G)$. Justify: $RL \subseteq CF$	J
24.	Class of context-free languages is closed under intersection. Justify : $L_1 = \{a^n b^n c^m, n, m \ge 0\}$ is CF, $L_1 = \{a^m b^n c^n, n, m \ge 0\}$ is CF, but $L_1 \cap L_2 = \{a^n b^n c^n, n \ge 0\}$ is not CF	y
25.	A CF language is a regular language. Justify : $L = \{a^n b^n : n \ge 0\}$ is CF and not regular	n n

2 PART 2: PROBLEMS

QUESTION 1

Let L_1, L_2 be the following languages over $\Sigma = \{a, b\}$:

$$L_1 = \{ w \in \Sigma^* : \exists_{u \in \Sigma\Sigma} (w = uu^R u) \},$$
$$L_2 = \{ w \in \Sigma^* : ww = www \}.$$

1. List elements of $\Sigma\Sigma$

Solution

Observe that Σ is a language over Σ as $\Sigma \subseteq \Sigma$

 $\Sigma\Sigma$ is hence a concatenation of two languages and we evaluate

$$\Sigma\Sigma = \{a, b\} \circ \{a, b\} = \{aa, bb, ab, ba\}$$

2. Show that L_1 is a finite set

Solution

We have that

$$L_1 = \{ w \in \Sigma^* : \exists u \in \{aa, bb, ab, ba\} (w = uu^R u) \}$$

By definition of L_1 we evaluate that

 $L_1 = \{aaaaaa, abbaab, baabba, aaaaaa, bbbbbb\}$

This proves that L_1 is a finite set

3. Give examples of 2 words w over Σ such that $w \notin L_1$.

Solution Obviously, $a, b \notin L_1$ because $a, b \notin \Sigma\Sigma$

4. Show that $L_2 \neq \emptyset$.

Solution e = eee, hence $e \in L_2$

QUESTION 2

Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution : By definition, $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence

$$(L_1 \Sigma^* L_2)^* \subseteq \Sigma^*.$$

We have to show that also

$$\Sigma^{\star} \subseteq (L_1 \Sigma^{\star} L_2)^{\star}.$$

Let $w \in \Sigma^*$. We have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$.

QUESTION 3

Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*.$$

Draw a state diagram. Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of *M* are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1\}$, $s = q_0$, $F = \{q_0, q_1\}$. We define Δ as follows. $\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}.$

 ${\bf Strings\ accepted\ :\ }ab, abab, abab, ababba, ababbaba,$

Solution 2 We use the book definition.

Components of *M* are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$. We define Δ as follows. $\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}.$

Strings accepted : *ab*, *abab*, *abba*, *ababba*, *ababbaba*,

QUESTION 4 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \ge 0\}.$$

Solution

$$\begin{split} M &= (K, \Sigma, \Gamma, \Delta, s, F) \text{ for } \\ K &= \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a\}, s, F = \{f\}, \\ \Delta &= \{((s, b, e), (s, aa)), ((s, e, e), (f, e)), ((f, a, a), (f, e))\} \end{split}$$

Explain the construction. Write motivation.

Solution M operates as follows: Δ pushes aa on the top of the stock while M is reading b, switches to f (final state) non-deterministically; and pops a while reading a (all in final state). M puts on the stock two a's for each b, and then remove all a's from the stock comparing them with a's in the word while in the final state.

Trace a transitions of M that leads to the acceptance of the string *bbaaaa*.

Solution The accepting computation is:

$$(s, bbaaaa, e) \vdash_{M} (s, baaaa, aa) \vdash_{M} (s, aaaa, aaaa) \vdash_{M} (f, aaaa, aaaa)$$
$$\vdash_{M} (f, aaa, aaa) \vdash_{M} (f, a, aa) \vdash_{M} (f, a, a) \vdash_{M} (f, e, e)$$

Solution 2 $M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, s, F = \{f\},$$
$$\Delta = \{((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, aa, b), (f, e))\}$$

QUESTION 5 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \rightarrow aS \mid A \mid e, A \rightarrow abA \mid a \mid b\}.$$

Part 1

Use the construction in the proof of **L-GTheorem:**

Language L is regular if and only if there exists a regular grammar G such that L = L(G)

to construct a **finite automaton** M, such that L(G) = L(M).

Draw a **diagram** of M

Solution We construct a non-deterministic finite automata

$$M = (K, \Sigma, \Delta, s, F)$$

as follows:

$$K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\}, \\ \Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$$

2. Trace a **transition** of M that leads to the acceptance of the string *aaaababa*, and compare with a **derivation** of the same string in G.

Solution

The accepting computation is:

$$(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa) \vdash_{M} (A, ababa)$$
$$\vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$$

G derivation is:

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA \Rightarrow aaaababA \Rightarrow aaaababa$$

QUESTION 6

Prove that the Class of context-free languages is NOT closed under intersection

Proof

Assume that the context-free languages are are closed under intersection

Observe that both languages

$$L_1 = \{a^n b^n c^m : m, n \ge 0\}$$
 and $L_2 = \{a^m b^n c^n : m, n \ge 0\}$

are context-free

So the language

 $L_1 \cap L_2$

must be **context-free**, but

$$L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$$

and we have proved that $L = \{a^n b^n c^n : n \ge 0\}$ is **not** context-free. Contradiction

EXTRA CREDIT

Use closure under union for CF languages to show that

$$L = \{a^n b^n : n \neq m\}$$

is a CF language

Solution

 $L = L_1 \cup L_2$ for $L_1 = \{a^n b^m : n > m\}$ and $L_2 = \{a^n b^m : n < m\}$ and $L = L_1, L_2$ are both CF