CSE303 PRACTICE FINAL Spring 2018 (15 extra pts)

NAME ID:

MY POINTS ARE:

TAKE test as a PRACTICE - and correct it yourself to see how much points you would get.

Solutions to all problems and questions are somewhere on our webpage! so you CAN correct yourself-but do it **ONLY AFTER you complete it all by yourself**.

This is the **goal** of the PRACTICE TEST!

PLEASE SUBMIT your SOLUTIONS that have been CORRECTED BY YOU - Write corrections in RED. You WILL GET 15 points for THAT! even if all problems you solved were first wrong- and then CORRECTED!

Write a sum of POINTS you give yourself for your solutions - after you check your answers for corrections.

The **real midterm will have less problems**; I will make sure you will be able to complete it within 1 hour and 15 minutes.

BRING YOUR solved-corrected TEST to class on Wednesday, May 2 -Last day of classes, or to my office any day BEFORE May 2

I WILL POST THE SOLUTIONS on May 2 after the class- for you to STUDY for FINAL. I WILL not ACCEPT solutions after Wednesday, May 2.

FINAL is scheduled for Tuesday, MAY 8, 5:30 -8:00 pm, in JAVITS 100

1 PART 1 (25pt): Yes/No Questions

Circle the correct answer (each question is worth 1pt) Write SHORT justification.

	1 / 3		
1.	A is uncountable iff $ A = \mathbf{c}$ (continuum). Justify:		
		\mathbf{y}	n
2.	$(ab \cup a^*b)^*$ is a regular language Justify :		
		\mathbf{y}	n
3.	There are uncountably many languages over $\Sigma = \{a\}$. Justify:		
		\mathbf{y}	n
4.	$L^* = \{ w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash_M^* (q, e) \}.$ Justify :		
	ousing.	\mathbf{y}	n

5. $L^* = L^+ - \{e\}.$

Justify:

 \mathbf{y} \mathbf{n}

6. $L^* = \{w_1 \dots w_n, w_i \in L, i = 1, \dots, n\}.$ Justify:

> \mathbf{y} \mathbf{n}

7. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$. Justify:

 \mathbf{y} \mathbf{n}

8. If M is a FA, then $L(M) \neq \phi$. Justify:

 \mathbf{y} \mathbf{n}

9. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. Justify:

 \mathbf{y} \mathbf{n}

10. A language is regular if and only if L = L(M) and M is a finite automaton Justify:

 \mathbf{y}

11. If L is regular, there is a PDA M such that L = L(M). Justify:

 \mathbf{y} \mathbf{n}

12. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify:

 \mathbf{y} \mathbf{n}

13. Every subset of a regular language is a language. Justify:

> \mathbf{y} \mathbf{n}

14. Any finite language is CF. Justify:

> \mathbf{y} \mathbf{n}

15. Intersection of any two regular languages is CF language. Justify:

> \mathbf{n} \mathbf{y}

16. Union of a regular and a CF language is a CF language. Justify:

 \mathbf{n}

17. If L is regular, there is a CF grammar G, such that L = L(G). Justify:

> \mathbf{y} \mathbf{n}

18. $L = \{a^nb^nc^n : n \ge 0\}$ is CF. Justify:

> \mathbf{y} \mathbf{n}

19. $L = \{a^n b^n : n \ge 0\}$ is CF.

Justify:

 \mathbf{y} \mathbf{n}

20. Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*, w^R = w$ Justify:

 \mathbf{y} \mathbf{n}

21. Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \rightarrow SS \mid (S)\}$. L(G) is regular. Justify:

 \mathbf{y} \mathbf{n}

22. $L = \{a^n b^m c^n : n, m \in N\}$ is CF. Justify:

 \mathbf{y} \mathbf{n}

23. If L is regular, then there is a CF grammar G, such that L = L(G). Justify:

 \mathbf{n} \mathbf{y}

24. Class of context-free languages is closed under intersection. Justify:

 \mathbf{n} \mathbf{y}

25. A CF language is a regular language. Justify:

> \mathbf{y} \mathbf{n}

PART 2 (120pts) 2

Each Question is 20pts

QUESTION 1

Let L_1, L_2 be the following languages over $\Sigma = \{a, b\}$:

$$L_1 = \{ w \in \Sigma^* : \exists_{u \in \Sigma\Sigma} (w = uu^R u) \},$$

$$L_2 = \{ w \in \Sigma^* : ww = www \}.$$

- 1. List elements of $\Sigma\Sigma$
- **2.** Show that L_1 is a finite set

- **3.** Give examples of 2 words w over Σ such that $w \notin L_1$.
- **4.** Show that $L_2 \neq \emptyset$.

QUESTION 2

Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

QUESTION 3

Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*.$$

1. Draw the state diagram.

2 Justify your construction by listing some strings accepted by the state diagram.

QUESTION 4 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \ge 0\}.$$

1. List componenets : $M = (K, \Sigma, \Gamma, \Delta, s, F)$

 $\mathbf{2.}$ Draw diagram

 ${\bf 3.}\,$ Explain the construction. Write motivation.

4. Trace a transitions of M that leads to the acceptance of the string bbaaaa.

QUESTION 5 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},\$$

$$R = \{S \to aS \mid A \mid e, A \to abA \mid a \mid b\}.$$

1. Use the construction in the proof of L-GTheorem:

Language L is regular if and only if there exists a regular grammar G such that L = L(G)

to construct a **finite automaton** M, such that L(G) = L(M).

JUST DRAW a **diagram** of M

2. Trace a **transition** of M that leads to the acceptance of the string aaaababa, and compare with a **derivation** of the same string in G.

QUESTION 6

Prove that the Class of context-free languages is NOT closed under intersection

EXTRA CREDIT

Use closure under union for CF languages to show that

$$L = \{a^n b^n : \ n \neq m\}$$

is a CF language