CSE303 Q2 SOLUTIONS Spring 2018

PART 1: YES/NO QUESTIONS

- 1. The set F of final states of any deterministic finite automaton is always non-empty. **Justify**: the definition says that F is a finite set, i.e. can be empty, hence for some M, $L(M) = \emptyset$.
- A configuration of a deterministic finite automaton M = (K, Σ, δ, s, F) is any element of K × Σ* × K
 Justify: it is any element of K × Σ*
- 3. Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a **transition relation** iff the following condition holds $(q, aw) \vdash_M (q', w)$ iff $\delta(q', a) = q$. **Justify**: Proper condition is: $(q, aw) \vdash_M (q', w)$ iff $\delta(q, a) = q'$
- 4. For any $M = (K, \Sigma, \delta, s, F), L(M) \neq \emptyset$ Justify: for any M, such that $F = \emptyset$ we have that $L(M) = \emptyset$
- If M = (K,Σ,Δ,s,F) is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture.
 Justify: Σ ∪ {e} ⊆ Σ*
- **PART 2:** Few Very Short Questions

Q1: M1 has components: $K = \{q\}, s = q, \Sigma = \emptyset, \delta = \emptyset, F = \emptyset$.

Solution

- **1.** M1 is deterministic
- **2.** $L(M1) = \emptyset$
- **Q2:** M2 has components: $K = \{q_0, q_1, q_2\}, s = q_0, \Sigma = \{a, b\}, F = \{q_1\}$ $\delta = \{(q_0, a, q_1), (q_1, a, q_1), (q_0, b, q_2)\}$

Solution

1. M2 is non-deterministic; δ is not a function with the domain $K \times \Sigma$. It can be completed to a function by adding some trap states. But the trap states information was not stated in the problem - so **M2** is NDFA

2. $L(M2) = aa^*$

Q3 M3 has components: $K = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_1, q_2\}$ $\Delta = \{(q_0, a, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_1, b, q_2), (q_2, ab, q_2)\}$

Solution

M3 is NOT an automaton. It does not have the INITIAL state!

 \mathbf{n}

n

n

 \mathbf{n}

У

PART 3: PROBLEMS

QUESTION 1 The components of M represent a deterministic finite automaton M with some trap states.

Components of M are:

$$\begin{split} & K = \{q_0, q_1, q_2, q_3\}, \ s = q_0, \ \Sigma = \{a, b\}, \ F = \{q_1, q_3\} \\ & \delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3)\} \end{split}$$

Complete the components to a full definition of a deterministic M by adding trap state(s)

Solution We add a new state q_4 and extend δ to function δ_1 such that $\delta_1: (K \cup \{q_4\}) \times \Sigma \longrightarrow K \cup \{q_4\}$ as follows

 $\delta_1 = \delta \cup \{ (q_0, b, q_4), (q_1, a, q_1 4), (q_3, a, q_4), (q_3, b, q_4) \}$

Write a regular expression or a property defining L(M).

Solution $L(M) = a \cup aba^*b$

QUESTION 2 Construct a non-deterministic finite automaton M, such that

$$L(M) = (ba \cup b)^* \cup (bb \cup a)^*$$

Solution Some elements of L(M) are: bab, bba, babb, bbaa, bbaabb, babbba, ...

Components of M are:

$$K = \{q_0, q_1, q_2\}, \ s = q_0, \ \Sigma = \{a, b\},$$
$$\Delta = \{(q_0, e, q_1), (q_0, e, q_2), (q_1, ba, q_1), (q_1, b, q_1), (q_2, bb, q_2), (q_2, a, q_2)\},$$
$$F = \{q_1, q_2\}$$

QUESTION 3

Let $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b, c\}$, $F = \{q_1, q_2\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_0, b, q_2)\}$

Draw the diagram an automaton M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

We apply the "stretching" technique to M and the new M' is as follows.

$$\begin{aligned} M' &= (K \cup \{p_1, p_2, p_3\} \ \Sigma, \ s = q_0, \ \Delta', \ F' = F \) \\ \Delta' &= \{(q_0, b, q_2), (q_0, a, p_1), \ (p_1, b, p_2), \ (p_2, c, q_0), \ (q_0, b, q_2), \ (q_0, a, p_3), \ (p_3, b, q_1) \} \end{aligned}$$