PART 1: YES/NO QUESTIONS

 ${\bf Circle}\,$ the correct answer. ${\bf Write}\,$ SHORT justification.

	1. $\{1, \{\emptyset\}, 2\} \cap 2^{\emptyset} \neq \emptyset$ Justify : $2^{\emptyset} = \{\emptyset\}$ and $\emptyset \notin \{1, \{\emptyset\}, 2\}$	n
	2. The relation $R = \{(n,m): n \in N \text{ and } m \in \{0,3\}\}$ is a function Justify : R is not a function. For example $(0,0) \in R$, $(0,3) \in R$, $(1,0) \in R$, $(1,3) \in R$. In fact for any $n \in N$, $(n,0) \in R$ and $(n,3) \in R$.	n
	3. If the A is uncountable, then $ A = C$ Justify : The set 2^R of all subsets of real numbers R is uncountable, but by Cantor Theorem we have that $ 2^R > R = C$.	n
	4. The set $A = \{x \in N : x < 0\}$ is infinite Justify : A is finite as $\{x \in N : x < 0\} = \emptyset$	n
	 5. The set A = {Ø, {Ø}} is an alphabet Justify: A is a finite set and any finite set is an alphabet by definition 	у
	 6. Let Σ = {Ø}. There are uncountably many languages over Σ. Justify: Σ ≠ Ø as Ø is element of Σ. Hence there are infinitely countably many elements in Σ* and uncountably many subsets of Σ*. In fact exactly as many as real numbers as 2^{Σ*} = R = C. 	у
	7. For any languages L_1 , L_2 , L over $\Sigma \neq \emptyset$ $(L_1 \cup L_2) \circ L = (L_1 \circ L) \cup (L_2 \circ L)$ Justify : We proved that concatenation is distributive over union of languages	у
	8. $L^* = \{w_1w_n : w_i \in L, i = 1, 2,n, n \ge 1\}$ Justify: This is definition of L^+ ; Kleene Star must have condition $n \ge 0$.	n
	 Regular language is a regular expression. Justify: Regular language is <i>defined</i> by a regular expression. 	n
1	0. For any language L over an alphabet Σ , $L^+ = L \cup L^*$. Justify : only when $e \in L$ as $e \in L^*$ always.	n

PART 2

QUESTION 1

Given an alphabet $\Sigma = \{a, b\}$ and a regular expression $\alpha = ab^* \cup a^*b \cup (a \cup b)^*$.

1.Evaluate $L = \mathcal{L}(\alpha)$.

2. Give a property describing the language L determined by α ,

Solution

1. We evaluate

$$L = \mathcal{L}(ab^{\star} \cup a^{\star}b \cup (a \cup b)^{\star}) = \mathcal{L}(ab^{\star}) \cup \mathcal{L}(a^{\star}b) \cup (\mathcal{L}(a) \cup \mathcal{L}(b))^{\star} = \{a\}\{b\}^{\star} \cup \{b\}\{a\}^{\star} \cup \{a,b\}^{\star}$$

2. Observe that $\{a\}\{b\}^* \cup \{b\}\{a\}^* \subseteq \{a,b\}^*$ hence the language is

$$L=\{w:w\in\{a,b\}^\star\}=\Sigma^\star$$

QUESTION 2

Let $\Sigma = \{a, b\}$. Let $L \subseteq \Sigma^{\star}$ be defined as $L = \{w \in \Sigma^{\star} : w \text{ contains an EVEN the number of } b 's \}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L$. You can use shorthand notation. Explain shortly your answer.

Solution

$$\alpha = a^* (a^* b a^* b a^*)^*$$

Justification

The regular expression $a^*ba^*ba^*$ describes a string $w \in \Sigma^*$ with **exactly two** b 's.

The regular expression

 $(a^*ba^*ba^*)^*$

- represents multiples of $w \in \Sigma^*$ with **exactly two** b 's and hence represents words in which a number of b 's is an even number.
- 0 is an even number, so we need to add the case of zero number of b 's, i.e. we need to include words e, a, aa, aaa, ...

We do so by concatenating $(a^*ba^*ba^*)^*$ with a^* and get

$$L = a^*(a^*ba^*ba^*)^*$$
 or $L = (a^*ba^*ba^*)^*a^*$