
CSE303 PRACTICE MIDTERM SOLUTIONS

1 YES/NO questions

1. For any binary relation R ⊆ A×A, R∗ exists.

Justify: definition y

2. R∗ = R ∪ {(a, b) : there is a path from a to b}.
Justify: book definition y

3. R∗ = R for R = {(a, b), (b, c), (a, c)}.
Justify: (a, a) ∈ R∗ (trivial path from a to a always exist) but (a, a) 6∈ R n

4. All infinite sets have the same cardinality.

Justify: |N | < |2N | by Cantor Theorem and N, 2N are infinite n

5. Set A is uncountable iff R ⊆ A (R is the set of real numbers).

Justify:R, 2R are both uncountable and R is not a subset of 2R (R 6⊆ 2R) but R ∈ 2R. n

6. Let A 6= ∅ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence
relations on A.
Justify: one can define up to 25 (as many as partitions) of equivalence classes y

7. There is a relation that is equivalence and order at the same time.

Justify: equality relation y

8. Let A = {n ∈ N : n2 + 1 ≤ 15}. It is possible to define 8 alphabets Σ ⊆ A.

Justify:A has 4 elements, so we have 24 > 8 subsets y

9. There is exactly as many languages over alphabet Σ = {a} as real numbers.

Justify: |Σ∗| = ℵ0, |2Σ∗ | = |R| = C. y

10. Let Σ = {a, b}. There are more than 20 words of length 4 over Σ.

Justify: There are exactly 24 = 16 words of length 4 over Σ and 16 < 20. n

11. L∗ = {w1...wn : wi ∈ L, i = 1, 2, ..n, n ≥ 1}.
Justify: n ≥ 0. n

L+ = L ∪ L∗

Justify: the problem is only with cases e ∈ L or e 6∈ L. When e ∈ L, then e ∈ L+, and always
e ∈ L∗, hence e ∈ LL∗.
When e 6∈ L, then e 6∈ L+, and always e ∈ L∗, hence e ∈ L ∪ L∗ and L+ 6= L ∪ L∗ n

12. L+ = L∗ − {e}.
Justify: only when e 6∈ L. When e ∈ L we get that e ∈ L+ and e 6∈ L∗ − {e}. n

13. If L = {w ∈ {0, 1}∗ : w has an unequal number of 0’s and 1’s }, then L∗ = {0, 1}∗.
Justify: 1 ∈ L, 0 ∈ L so {0, 1} ⊆ L ⊆ Σ∗, hence {0, 1}∗ ⊆ L∗ ⊆ (Σ∗)∗ = Σ∗ = {0, 1}∗ and
L∗ = {0, 1}∗. y
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14. For any languages L1, L2, (L1 ∪ L2) ∩ L1 = L1.

Justify: languages are sets and (A ∪B) ∩A = A. y

15. For any languages L1, L2,
L∗1 = L∗2 iff L1 = L2

Justify: Consider L1 = {a, e}, L2 = {a}. Obviously, L1 6= L2 and L∗1 = L∗2. n

16. For any languages L1, L2, (L1 ∪ L2)∗ = L∗1.

Justify: languages are sets so it is true only when L1 ⊆ L2. n

17. ((∅∗ ∩ a) ∪ b∗) ∩ ∅∗ describes a language with only one element.

Justify: ∅ ∪ b∗ = b∗, b∗ ∩ {e} = {e} y

18. ((∅∗ ∩ a) ∪ b∗) ∩ a∗ is a finite regular language.

Justify: b∗ ∩ a∗ = {e} = ∅∗ y

19. ({a} ∪ {e}) ∩ {ab}∗ is a finite regular language.

Justify: ({a} ∪ {e}) ∩ {ab}∗ = {a, e} ∩ {ab}∗ = {e} = ∅∗ y

20. Any regular language has a finite description.

Justify: by definition L = L(r) and r is a finite string. y

21. Any finite language is regular.

Justify: L = {w1} ∪ ... ∪ {w1} and {wi} has a finite description wi y

22. Every deterministic automata is also non-deterministic.
Justify: any function is a relation y

23. The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: K 6= ∅, because s ∈ K. If Σ = ∅ the set of all configuration of non-deterministic
automata (book definition) is a subset of K × ∅ ∪ {e} 6= ∅ as it always contains (s, e). For the
lecture definition, the set of all configuration is a subset ofK × Σ∗ and always e ∈ Σ∗ hence
always (s, e) ∈ K × Σ∗ y

24. Let M be a finite state automaton, L(M) = {w ∈ Σ∗ : (q, w)
∗,M7−→ (s, e)}.

Justify: L(M) = {w ∈ Σ∗ : ∃q ∈ F ((s, w)
∗,M7−→ (q, e))} n

25. For any automata M , L(M) 6= ∅.
Justify: if Σ = ∅ or F = ∅, L(M) = ∅ n

26. L(M1) = L(M2) iff M1, M2 are deterministic.

Justify: Let M1 be an automata over {a, b} with with ∆ = {(q0, ab, q0)}, F = {q0}, s = q0 and
let M2 be an automata over {a, b} with with ∆ = {(q0, ab, q0), (q0, e, q1)}, F = {q1}, s = q0.
L(M1) = L(M2) = (ab)∗ and both are non-deterministic n

27. DFA and NDFA compute the same class of languages.
Justify: basic theorem y

28. Let M1 be a deterministic, M2 be a nondeterministic FA, L1 = L(M1) and L2 = L(M2) then
there is a deterministic automaton M such that L(M) = (L∗ ∪ (L1 − L2)∗)L1

Justify: the class of finite automata is closed under ∗,∪,−,∩ y
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TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: M = (K,Σ,∆, s, F ) is non-deterministic when

∆ ⊆ K × (Σ ∪ {e})×K

OBSERVE that ∆ is always finite because K,Σ are finite sets.

LECTURE DEFINITION: M = (K,Σ,∆, s, F ) is non-deterministic when ∆ is finite and

∆ ⊆ K × Σ∗ ×K

OBSERVE that we have to say in this case that ∆ is finite because Σ∗ is infinite.

SOLVING PROBLEMS you can use any of these definitions.

2 Problems

PROBLEM 1

Let L be a language defines as follows

L = {w ∈ {a, b}∗ : every a is either immediately proceeded or followed by b}.

1. Describe a regular expression r such that L(r) = L (Meaning of r is L).

Solution L = (b ∪ ab ∪ ba ∪ bab)∗

2. Construct a finite state automata M , such that L(M) = L.

Solution

Components of M are:
K = {s}, {a, b}, s, F = {s},

∆ = {(s, b, s), (s, ab, s), (s, ba, s), (s, bab, s).}

Some elements of L(M) are: b, bb, baab, abab, abbbba, bbbabbbabbbabb

PROBLEM 2

Let
M = (K, Σ, s, ∆, F )

for K = {q0, q1, q2, q3}, s = q0

Σ = {a, b}, F = {q1, q2, q3} and

∆ = {(q0, a, q1), (q0, b, q3), (q1, a, q2), (q1, b, q1), (q3, a, q3), (q3, b, q2)}

1. List some elements of L(M).

Solution a, b, aa, bb, aba, abbba

2. Write a regular expression for the language accepted by M . Simplify the solution.

Solution

L(M) = ab∗ ∪ ab∗a ∪ ba∗ ∪ ba∗b = ab∗(e ∪ a) ∪ ba∗(e ∪ b).
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3. Define a deterministic M ′ such that M ≈M ′, i.e. L(M) = L(M ′).

Solution We complete M do a deterministic M ′ by adding a TRAP state q4 and put

∆′ = δ = ∆ ∪ {(q2, a, q4), (q2, b, q4), (q4, a, q4), (q4, b, q4)}

Justify why M ≈M ′.

Solution q4 is a trap state, it does not influence L(M).

PROBLEM 3

For M defined as follows
M = (K, Σ, s, ∆, F )

for K = {q0, q1, q2, q3}, s = q0

Σ = {a. b}, F = {q2} and

∆ = {(q0, a, q3), (q0, e, q3), (q0, b, q1), (q0, e, q1), (q1, a, q2), (q2, b, q3), (q2, e, q3)}

Write 2 steps of the general method of transformation the NDFAM defined above into an equivalent
DFA M ′.

Step 1: Evaluate δ(E(q0), a) and δ(E(q0), b).

Step 2: Evaluate δ on all states that result from step 1.

Reminder: E(q) = {p ∈ K : (q, e)
∗,M7−→ (p, e)} and

δ(Q, σ) =
⋃

p∈K
{E(p) : ∃q∈Q(q, σ, p) ∈ ∆}

Solution Step 1: First we need to evaluate E(q), for all q ∈ K.

E(q0) = {q0, q1, q3} = S, E(q1) = {q1}, E(q2) = {q2q3} ∈ F, E(q3) = {q3}

δ(E(q0), a) = δ({q0, q1, q3}, a) = E(q3) ∪ E(q2) ∪ ∅ = {q2, q3} ∈ F

δ(E(q0), b) = δ({q0, q1, q3}, b) = E(q1) ∪ ∅ ∪ ∅ = {q1}

Solution Step 2:

δ({q2, q3}, a) = ∅ ∪ ∅ = ∅

δ({q2, q3}, b) = E(q3) ∪ ∅ = {q3}

δ({q1}, a) = E(q2) = {q2, q3} ∈ F

δ({q1}, b) = ∅
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