CSE303 Q2 SOLUTIONS

PART 1: YES/NO QUESTIONS (10 points)

Circle the correct answer. Write SHORT justification.

Answers without justification will not receive credit

1. The set K of states of a deterministic finite automaton can be empty. Justify: $s \in K$	n
2. A configuration of a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ is any element of $K \times \Sigma^* \times K$.)
Justify : element of $K \times \Sigma^*$	n
3. Given $M = (K, \Sigma, \delta, s, F)$, $L(M) = \{w \in \Sigma^* : \exists q \in K(s, w) \vdash^*_M(q, e)\}.$ Justify : only when $q \in F$	n
4. For any $M = (K, \Sigma, \delta, s, F), L(M) \neq \emptyset$ Justify : for any M , such that $F = \emptyset$ or $\Sigma = \emptyset$ we have that $L(M) = \emptyset$.	
	\mathbf{n}
5. There is a deterministic $M = (K, \Sigma, \delta, s, F)$, such that $e \in L(M)$ Justify : any M such that $s \in F$ as we we proved a Theorem : $e \in L(M)$ iff $s \in F$	У
6. Given a non-deterministic automaton $M = (K, \Sigma, \Delta, s, F)$ as defined in the book, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a one step computation iff the following condition holds	
$(q, aw) \vdash_M (q', w)$ iff $(q, a, q') \in \Delta$ and $a \in \Sigma \cup \{e\}$.	
Justify : it is the book definition	
	У

- If M = (K,Σ,Δ,s,F) is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture. Justify: Σ ∪ {e} ⊆ Σ*.
- у
- 8. If $M = (K, \Sigma, \delta, s, F)$ is a deterministic, then M is also non-deterministic. **Justify**: any function is a relation and $\delta \subseteq K \times \Sigma \times K \subseteq K \times \Sigma \cup \{e\} \times K$ **y**
- 9. We define, for any (deterministic or non-deterministic $M = (K, \Sigma, \Delta, s, F)$ a computation of the length *n* from (q, w) to (q', w') as a sequence

$$(q_1, w_1), (q_2, w_2), ..., (q_n, w_n), n \ge 1$$

of configurations, such that $q_1 = q$, $q_n = q'$, $w_1 = w$, $w_n = w'$ and $(q_i, w_i) \vdash^*_M (q_{i+1}, w_{i+1})$ for i = 1, 2, ... n - 1.

Statement:For any M, a computation of the length 1 exists. Justify: TRIVIAL path (case n=1) of length one always exists

у

 \mathbf{n}

10. A trap state of a DFA automaton M is any of its states that traps computations of M
Justify: Definition: A trap state of a DFA automaton M is any of its states that does not influence the language L(M) of M

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

PART 2: Few Very Short Questions For the automata *M* below

- 1. State and explain whether M represents a deterministic or a non-deterministic automaton.
- **2.** Write down a regular expression representing L(M).

Q1: M1 has components: $K = \{q\}, s = q, \Sigma = \emptyset, \delta = \emptyset, F = \emptyset$.

Solution

- **1.** M1 is deterministic.
- **2.** $L(M1) = \emptyset$.
- **Q2:** M2 has components: $K = \{q_0, q_1, q_2\}, s = q_0, \Sigma = \{a, b\}, \delta = \{(q_0, a, q_1), (q_1, a, q_1), (q_0, b, q_2)\}, F = \{q_1\}.$
- 1. M2 is non-deterministic; δ is not a function with the domain $K \times \Sigma$. It can be completed to a function by adding some trap states. But the trap states information was not it was not stated in the problem.
- **2.** $L(M2) = aa^*$.
- **Q3:** M3 $K = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, \Delta = \{(q_0, a, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_1, b, q_2), (q_2, ab, q_2)\}, F = \{q_1, q_2\}.$

Solution M3 is NOT an automaton. It does not have the INITIAL state!

PART 3: PROBLEMS

QUESTION 1 Construct a deterministic finite automaton M such that

 $L(M) = \{ w \in \{a, b\}^* : \text{ neither bb nor aa is a substring of } w \}.$

Draw a state diagram and specify all components K, Σ, δ, s, F of M. Justify your construction.

Solution

Components of $M = (K, \Sigma, \delta, s, F)$ are: $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, q_3$ is a trap state, $F = \{q_0, q_1, q_2\}$. We define δ on non-trap states as follows. $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2,$ $\delta(q_1, b) = q_2,$ $\delta(q_2, a) = q_1.$

M accepts strings a, aba, ababa.... or b, bab, baba... etc and never aa, bb, etc...

QUESTION 4 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3, \}$, $s = q_0$ $\Sigma = \{a, b, c\}$, $F = \{q_3\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_1, bb, q_3), (q_0, b, q_2), (q_2, aa, q_3)\}.$

- 1. Find the regular expression describing the L(M). Simplify it as much as you can. Explain your steps.
- Solution $L(M) = (abc)^*abbb \cup abbb \cup (abc)^*baa \cup ba = (abc)^*abbb \cup (abc)^*baa = (abc)^*(abbb \cup baa).$

We used the property:

$$LL_1 \cup LL2 = L(L_1 \cup L_2).$$

- 2. Write down (you can draw the diagram) an nondeterministic automata M' such that $M' \equiv M$ and M' is defined by the BOOK definition.
- **Solution** We apply the "stretching" technique to M and the new M' is as follows.

$$M' = (K \cup \{p_1, p_2, ..., p_5\} \Sigma, \ s = q_0, \ \Delta', \ F' = F)$$

 $\begin{array}{l} \text{for} \quad K = \{q_0, q_1, q_2\}, \ s = q_0 \\ \Sigma = \{a, b\}, \ F = \{q_3\} \text{ and} \\ \Delta' = \{(q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, a, p_3), (p_3, b, q_1), \\ (q_1, b, p_4), (p_4, b, q_3), (q_0, b, q_2), (q_2, a, p_5), (p_5, a, q_3)\}. \end{array}$