CSE303 PRACTICE FINAL (15 extra points)

NAME ID:

Practice Final is DUE LAST DAY OF CLASSES- Friday, May 4 I will be in my office 3-4pm. Please bring it in that time, or to class on Thursday.

FOR FINAL study Practice Final and Problems from Q1-Q4, and Midterm. I will choose some of these problems for your Final.

PART 1: Yes/No Questions Circle the correct answer to ALL questions. Write ONE-SENTENCE justification to **ten questions**.

1.	There are uncountably many languages over $\Sigma = \{a\}$. Justify:		
2.	Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ .	у	n
3.	Justify: $L^* = \{w \in \Sigma^* : \exists_{q \in F}(s, w) \vdash_M^* (q, e)\}.$	у	\mathbf{n}
1	Justify: $(a^*b \cup \phi^*) \text{ is a regular expression.}$	y	n
4.	Justify:	y	n
5.	Let L be a language defined by $(a^*b \cup ab)$, i.e (shorthand) $L = a^*b \cup ab$. Then $L \subseteq \{a, b\}^*$. Justify:		
6.	$\Sigma = \{a\}$, there are c (continuum) languages over Σ .	у	\mathbf{n}
7.	Justify: For any languages $L_1, L_2, L_3 \subseteq \Sigma^* L_1, \cup (L_2 \cap L_3) = (L_1 \cup L_2) \cap (L_1 \cup L_2)$	у	\mathbf{n}
	L_3). Justify:	V	n
		У	n

- 8. $L^* = L^+ \{e\}.$ Justify:
- 9. $L = ((\phi^* \cup b) \cap (b^* \cup \phi))$ (shorthand) has only one element. **Justify**:
- 10. If M is a FA, then $L(M) \neq \phi$. Justify:
- 11. If M is a nondeterministic FA, then $L(M) \neq \phi$. Justify:
- 12. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata. **Justify**:
- 13. If L is regular, then there is a finite M, such that L = L(M). Justify:
- 14. Any finite language is CF. **Justify**:
- 15. L_1 is regular, L_2 is CF, $L_1, L_2 \subseteq \Sigma^*$, then $L_1 \cap L_2 \subseteq \Sigma^*$ is CF. **Justify**:
- 16. Intersection of any two regular languages is CF language.

 Justify:
- 17. Union of a regular and a CF language is a CF language.

 Justify:
- 18. $L = \{a^n b^n c^n : n \ge 0\}$ is CF. Justify:
- 19. If L is regular, there is a PDA M such that L = L(M). Justify:
- 20. If L is regular, there is a CF grammar G, such that L = L(G). Justify:
- 21. $A \to Ax, A \in V, x \in \Sigma^*$ is a rule of a regular grammar. Justify:

 \mathbf{n}

 \mathbf{y}

 \mathbf{y}

22. $L = \{a^n b^n : n \ge 0\}$ is CF. Justify: \mathbf{n} 23. Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*$, $w^R w \in \Sigma^*$. Justify: \mathbf{n} 24. Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \to SS \mid (S)\}$. L(G) is regular. Justify: \mathbf{y} \mathbf{n} 25. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q Justify: \mathbf{n} \mathbf{y} 26. $L = \{a^n b^m c^n : n, m \in N\}$ is CF. Justify: \mathbf{n} 27. Class of context-free languages is closed under intersection. Justify: \mathbf{n} \mathbf{y} 28. Every subset of a Context Free language is a language. Justify: \mathbf{n} \mathbf{y} 29. A parse tree is always finite. Justify: \mathbf{n} 30. Any regular language is accepted by some PD automata. Justify: \mathbf{n} 31. Every subset of a regular language is a regular language. Justify: \mathbf{n} 32. A CF language is a regular language. Justify: \mathbf{n} 33. A regular language is a CF language. Justify: \mathbf{y} \mathbf{n} 34. A parse tree is always finite. Justify: \mathbf{n}

least two distinct parse trees.

35. A CF grammar G is called ambiguous if there is $w \in L(G)$ with at

Justify: 36. A CF language L is inherently ambiguous iff all context-free grammars G, such that L(G)=L are ambiguous. Justify:

37. Turing Machines can read and write.

Justify:

y n

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{y}

 \mathbf{y}

 \mathbf{y}

- 38. A configuration of a Turing machine $M = (K, \Sigma, \delta, s, H)$ is any element of a set $K \times \Sigma^* \times (\Sigma^*(\Sigma \{\#\}) \cup \{e\})$, where # denotes a blanc symbol. **Justify**:
- 39. A computation of a Turing machine can start at any position of $w \in \Sigma$. **Justify**:
- 40. Turing Machines are as powerful as today's computers.

 Justify:
- 41. It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa.

 Justify:
- 42. Church's Thesis says that Turing Machines are the most powerful.

 Justify:

PART 2: Problems

QUESTION 1 Given a Regular grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a,b,S,A\}, \quad \Sigma = \{a,b\},$$

$$R = \{S \to aS \mid A \mid e, \quad A \to abA \mid a \mid b\}.$$

1. Construct a finite automaton M, such that L(G) = L(M). You can draw a diagram.

2. Trace a transitions of M that lead to the acceptance of the string aaaababa, and compare with a derivation of the same string in G.

QUESTION 2 Construct a context-free grammar G such that

$$L(G) = \{w \in \{a, b\}^* : w = w^R\}.$$

Justify your answer.

QUESTION 3	Construct a	pushdown	automaton	M	such	that
------------	-------------	----------	-----------	---	------	------

$$L(M) = \{ w \in \{a, b\}^* : \ w = w^R \}$$

Components of M are:

Explain your construction. Write motivation.

Diagram of M is: