1 YES/NO questions

Circle the correct answer (each question is worth 2pt.) Write SHORT justification.

1. For any function f from $A \neq \emptyset$ onto A, f has property

$$\forall a \in A \; \exists b \in A(f(b) = a).$$

Justify: definition of "onto" function.

2. Some infinite sets have the same cardinality.

Justify : $ N = 2N $ and N (natural numbers) and 2N (even numbers) are infinite sets.	У
3. $\{\{a,b\}\} \in \{a,b,\{a,b\}\}$ Justify: $\{\{a,b\}\} \subseteq \{a,b,\{a,b\}\}$ as $\{a,b\} \in \{a,b,\{a,b\}\}$	
	n

у

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

4. For any function $R \subseteq A \times A$, R^{-1} exists.

Justify: Theorem: The inverse function R^{-1} exists iff R is 1-1 and "onto".

5. A language L is regular iff $L = \mathcal{L}(r)$ for some $r \in \Sigma^*$.

Justify: only when r is a regular expression.

```
6. L^+ = L^* - \{e\}.
```

Justify: only when $e \notin L$. When $e \in L$ we get that $e \in L^+$ and $e \notin L^* - \{e\}$.

- 7. For any languages L_1 , L_2 , $(L_1 \cup L_2) \cup L_1 = L_2$. **Justify**: languages are sets, so it holds only when only when $L_1 \subseteq L_2$. **n**
- 8. $(\emptyset^* \cap b^*) \cup \emptyset^*$ describes a language with two elements. **Justify**: the set $(\{e\} \cap \{b\}^*) \cup \{e\} = \{e\} \cup \{e\} = \{e\}$ has one element. **n**
- 9. For any automata M, $L(M) = \emptyset$ iff the set F of its final states is empty.

Justify: Let M be such that
$$\Sigma = \emptyset, F \neq \emptyset, s \notin F$$
, we get $L(M) = \emptyset$. **n**

10. If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture.

Justify: $\Sigma \cup \{e\} \subseteq \Sigma^*$

11. Let M be a finite state automaton, $L(M) = \bigcup_{q \in F} \{ w \in \Sigma^* : (s, w) \stackrel{*, M}{\longmapsto} (q, e) \}.$

Justify: $w \in \bigcup_{g \in F} \{ w \in \Sigma^* : (s, w) \xrightarrow{*, M} (q, e) \}$ iff there is $q \in F$ such that $(s, w) \xrightarrow{*, M} (q, e)$ iff $w \in L$. **Y**

- 12. For any finite automats M_1, M_2 , $L(M_1) = L(M_2)$ iff $M_1 \equiv M_2$. Justify: definition of automata equivalency.
- 13. DFA and NDFA recognize the same class of languages.

Justify: theorem proved in class

2 Two definitions of a non-deterministic automaton

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

 $\Delta \subseteq K \times \Sigma^* \times K$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

3 PROBLEMS

PROBLEM 1 Let $\Sigma = \{a, b\}$. Show that

$$(a \cup b)^* a(a \cup b)^* = \Sigma^* a \Sigma^*.$$

Solution Observe that

$$\mathcal{L}(a \cup b)^* = (\{a\} \cup \{b\})^* = \{a, b\}^* = \Sigma^*.$$

Hence $(a \cup b)^* a (a \cup b)^* = \Sigma^* a \Sigma^*$.

PROBLEM 2 Write a regular expression r, such that $L = \mathcal{L}(r)$ for L over $\Sigma = \{a, b\}$ defined as

 $L = \{ w \in \Sigma^* : w \text{ has no more than three } a's \}.$

у

у

у

Solution

PROBLEM 3 Let L be a language defines as follows

 $L = \{w \in \{a, b\}^* : between any two a's in w there is an even number of consequitive b's.\}.$

1. Describe a regular expression r such that $\mathcal{L}(r) = L$ (Meaning of r is L).

Solution Remark that 0 is an even number, hence $a^* \in L$,

$$r = b^* a^* b^* \cup b^* (a(bb)^* a)^* b^* = (b^* a(bb)^* ab^*)^*$$

2. Construct a *finite state automata* M, such that L(M) = L.

Solution

Components of M are:

 $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \{q_0, q_2, q_3\},$

$$\Delta = \{(q_0, b, q_0), (q_0, a, q_3), (q_0, a, q_1), (q_1, bb, q_1), (q_1, a, q_2), (q_2, e, q_0), (q_2, b, q_2), (q_3, b, q_3), (q_3, e, q_0)\}$$

Some elements of L(M) as defined by the state diagram are:

 $M = (K, \Sigma, s, \Delta, F)$

PROBLEM 4 Let

for $K = \{q_0\}, s = q_0, \Sigma = \{a, b\}, F = \{q_0\}$ and

$$\Delta = \{(q_0, aba, q_0), (q_0, ab, q_0)\}$$

1. List some elements of L(M).

Solution

```
e, ab, abab, ababa, ababaaba, \dots
```

2. Write a regular expression for the language accepted by *M*. **Solution**

$$L = (ab \cup aba)^*$$

3. Use the Book Definition to define an automaton M' such that $M' \equiv M$ (use the "STRETCH" technique).

 $K' = K \cup \{p_1, p_2, p_3\}, \Delta' = \Delta_{\Sigma \cup e} \cup \{(g_0, a, p_1), (p_1, b, p_2), (p_2, a, q_0), (q_0, b, p_3), (p_3, b, q_0)\}$ where $\Delta_{\Sigma \cup e}$ dense those elements of Δ that involve only elements of $\Sigma \cup e$.

PROBLEM 5 (20pts)

For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2\}, s = q_0$ $\Sigma = \{a, b\}, F = \{q_1, q_2\}$ and

$$\Delta = \{ (q_0, ab, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_2, bb, q_2), (q_1, e, q_2) \}$$

Write a regular expression describing L(M)).

$$aba^*(bb)^8 \cup a^*(bb)^* \cup b(bb)^*$$

Write 5 steps of the general method of transformation the NDFA M, into an equivalent deterministic M'.

<u>Reminder 1:</u> $E(q) = \{ p \in K : (q, e) \xrightarrow{*, M} (p, e) \}$ and

$$\delta(Q,\sigma) = \bigcup \{ E(p) : \exists q \in Q, \ (q,\sigma,p) \in \Delta \}.$$

<u>Reminder 2</u>: The above definitions apply to the Book definition of non-deterministic automata.

The proper DIAGRAM of **new** (book definition - use "stretch" method) M is: $K' = K \cup \{p_1, p_2\}, \Delta' = \Delta_{\Sigma \cup e} \cup \{(g_0, a, p_1), (p_1, b, q_1), (q_2, b, p_2), (p_2, b, q_2)\}$ where $\Delta_{\Sigma \cup e}$ denes those elements of Δ that involve only elements of $\Sigma \cup e$.

Solution: apply definition to M' defined above.