CSE303 Q3 SOLUTIONS

YES/NO questions 1. For any finite language
$$L \subseteq \Sigma^*, \Sigma \neq \emptyset$$
 there is a finite automata M , such that $L = L(M)$.
Justify: any finite language is regular

- 2. Given L_1, L_2 languages over Σ , then $((L_1 \cup (\Sigma^* L_2)) \cap L_2)$ is regular. Justify: only when both are regular languages
- 3. For any deterministic automata M, $L(M) = \bigcup \{R(1, j, n) : q_j \in K\}$, where R(1, j, n) is the set of all strings in Σ^* that may drive M from state initial state to state q_j without passing through any intermediate state numbered n+1 or greater, where n is the number of states of M.

Justify: only when $q_j \in F$

4. If $L_1 \cap L_2$ is a regular language, so are L_1 and L_2 .

Justify: No, L_1 and L_2 may not be regular. Take $L_1 = \{a^n b^n : n \in N\}$, $L_2 = \{a^n : n \in Prime\}$ $L_1 \cap L_2 = \emptyset$ is a regular language and L_1, L_2 are not regular.

- 5. $L = \{a^n a^n : n \ge 0\}$ is not regular. **Justify**: $L = a^n a^n = a^{2n} = (aa)^*$ and hence regular **n**
- 6. If L is regular, so is the language $L_1 = \{xy : x \in L, y \notin L\}$. **Justify**: Observe that $L_1 = L(\Sigma^* - L)$ and L regular, hence $(\Sigma^* - L)$ is regular (closure under complement), so is L_1 by closure under concatenation.
- 7. Let *L* be a regular language, and $L_1 \subseteq L$, then L_1 is regular. **Justify**: $L_1 = \{a^n b^n : n \ge 0\}$ is a non-regular subset of regular $L = a^* b^*$
- 8. Let L be a language. The language $L^R = \{w^R : w \in L\}$ is regular. Justify: L^R is accepted by finite automata M^R constructed from M such that L(M) = L
- 9. Let L be a **regular** language Σ . Then the following condition holds.

$$\exists n \ge 1 \forall w \in L(|w| \ge n \Rightarrow \forall x, y, z \in \Sigma^* (w = xyz \cap y \neq e \cap |xy| \le n \cap \forall i \ge 0 (xy^i z \in L)))$$

Justify: $\exists x, y, z \in \Sigma^*$.

10. Let L be a regular language over $\Sigma \neq \emptyset$. Then the following holds

1

$$\exists w \in \Sigma^* \exists x, y, z \in \Sigma^* (w = xyz \cap y \neq e \cap \forall n \ge 0 (xy^n z \in L))$$

Justify: only when *L* is infinite.

 \mathbf{n}

 \mathbf{n}

у

У

 \mathbf{n}

у

 \mathbf{n}

PROBLEMS

QUESTION 1 (5pts) Using the construction in the proof of theorem

A language is regular iff it is accepted by a finite automata

construct a a finite automata ${\cal M}$ accepting

$$L_1 = \mathcal{L} = ((ba)^* \cup (cb)^*)ab$$

You can just draw a diagrams.

Solution

1. Diagrams for M1, M2, M3 such that L(M1) = ab, L(M2) = bc, L(M3) = baSolution

 $\mathbf{M1}$ components:

$$K = \{q_1, q_2\}, \Sigma = \{a, b, c\}, s = q_1, F = \{q_2\},$$
$$\Delta_{M1} = \{(q_1, ba, q_2)\}$$

 ${\bf M2}$ components:

$$K = \{q_3, q_4\}, \Sigma = \{a, b, c\}, s = q_3, F = \{q_4\},$$
$$\Delta_{M2} = \{(q_2, cb, q_4)\}$$

M3 components:

$$K = \{q_5, q_6\}, \Sigma = \{a, b, c\}, s = q_5, F = \{q_6\},$$
$$\Delta_{M3} = \{(q_5, ab, q_6)\}$$

2. Diagrams for M4, M5 such that $L(M4) = L(M1)^*, L(M5) = L(M2)^*$

Solution

M4 components:

$$K = \{q_1, q_2, q_7\}, \Sigma = \{a, b, c\}, s = q_7, F = \{q_2, q_7\},$$
$$\Delta_{M4} = \{(q_7, e, q_1), (q_1, ba, q_2), (q_2, e, q_1)\}$$

M5 components:

$$K = \{q_3, q_4, q_8\}, \Sigma = \{a, b, c\}, s = q_8, F = \{q_4, q_8\},$$
$$\Delta_{M4} = \{(q_8, e, q_3), (q_3, cb, q_4), (q_4, e, q_3)\}$$

3. Diagram for M6 such that $L(M5) = L(M4) \cup L(M5)$

Solution

 ${\bf M5}$ components:

$$K = \{q_1, q_2, q_3, q_4, q_7, q_8, q_9\}, \Sigma = \{a, b, c\}, s = q_9, F = \{q_2, q_4, q_7, q_8\},$$

$$\Delta_{M5} = \{(q_9, e, q_7), (q_9, e, q_8), (q_7, e, q_1), (q_1, ba, q_2), (q_2, e, q_1), (q_8, e, q_3), (q_3, cb, q_4), (q_4, e, q_3)\}$$

4. Diagram for M = M5M3, i.e M is such that L(M) = L(M5)L(M3).

 ${\bf M}$ components:

$$K = \{q_1, q_2, q_3, q_4, q_7, q_8, q_9\}, \Sigma = \{a, b, c\}, s = q_9, F = \{q_6\},$$

$$\Delta_{M5} = \Delta_{M4} \cup \{(q_7, e, q_5), (q_8, e, q_5), (q_2, e, q_5), (q_4, e, q_5), (q_5, ab, q_6)\}$$

$$= \{(q_9, e, q_7), (q_9, e, q_8), (q_7, e, q_1), (q_1, ba, q_2), (q_2, e, q_1), (q_8, e, q_3), (q_3, cb, q_4), (q_4, e, q_3), (q_7, e, q_5), (q_8, e, q_5), (q_2, e, q_5), (q_4, e, q_5), (q_5, ab, q_6)\}$$

QUESTION 2 Evaluate *r*, such that

$$\mathcal{L}(r) = L(M)$$

using the Generalized Automata Construction, as described in example 2.3.2 page 80.

$$M = (\{q_1, q_2\}, \{a, b\}, s = q_1,$$

$$\Delta = \{(q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_1)\}, F = \{q_2\})$$

Step 1: Construct a generalized GM that extends M, i.e. such that L(M) = L(GM)

Solution

$$GM = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$
$$\Delta = \{(q_1, a, q_1), (q_1, a, q_2), (q_2, b, q_2), (q_2, a, q_1)\}, (q_3, e, q_1), (q_2, e, q_4)\}$$

Step 2: Construct $GM1 \simeq GM \simeq M$ by elimination of q_1 . Solution

$$GM1 = (\{q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$
$$\Delta = \{(q_3, a^*b, q_2), (q_2, a, q_2), (q_2, ba^*b, q_2)\}, (q_2, e, q_4))$$

Step 3: Construct $GM2 \simeq GM1 \simeq GM \simeq M$ by elimination of q_2 .

Solution

$$GM2 = (\{q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$
$$\Delta = \{(q_3, a^*b(ba^*b \cup a)^*, q_4))$$

Answer : the language is

$$L(M) = a^* b (ba^* b \cup a)^*$$

QUESTION 3 Show that the class of regular languages is not closed with respect to subset relation.

Solution Consider

$$L_1 = \{a^n b^n : n \in N\}, \ L_2 = a^* b^*$$

 $L_1 \subseteq L_2$ and L_1 is a non-regular subset of a regular L_2 .