CSE303 Q3 PRACTICE SOLUTIONS

YES/NO questions Circle the correct answer Write SHORT justification.

1. Any regular language is finite. Justify : $L = a^*$ is infinite	n
2. For any language L there is a deterministic automata M , such that $L = L(M)$. Justify: language must be regular	n
 3. Given L₁, L₂ regular languages over Σ, then (L₁ ∩ (Σ* − L₁))L₂ is not regular. Justify: Regular languages are closed under intersection and complement 	n
4. There is an algorithm that for any finite automata M computes a regular expression r , such that $L(M) = r$. Justify: defined in the proof of Main Theorem	У
5. For any M , $L(M) = \bigcup \{R(1, j, n) : q_j \in F\}$, where $R(1, j, n)$ is the set of all strings in Σ^* that may drive M from state initial state to state q_j without passing through any intermediate state numbered $n+1$ or greater, where n is the number of states of M . Justify: only when M is a finite automaton	n
 6. Pumping Lemma says that we can always prove that a language is regular. Justify: it gives certain characterization of infinite regular languages and can be used for proving that a language is not regular. 	n
7. $L = \{a^{2n} : n \ge 0\}$ is regular.	n
Justify: $L = (aa)^*$	у
8. $L = \{a^n : n \ge 0\}$ is not regular. Justify: $L = a^*$	n
9. $L = \{b^n a^n : n \ge 0\}$ is not regular. Justify: proved using Pumping Lemma	V
10. Let L be a regular language. The language $L^R = \{w^R : w \in L\}$ is regular.	У
Justify : L^R is accepted by a finite automata $M^R = (K \cup s', \Sigma, \Delta', s', F \{s\})$, where K is the set of states of M accepting L, $s' \notin K$, s the initial state of M, F is the set of final states of M and	=
$\Delta' = \{(r,\sigma,p) : (p,\sigma,r) \in \Delta\} \cup \{(s',e,q) : q \in F\},\$	
where Δ is the set of transitions of M .	у
11. Any subset of a regular language is a regular language. Justify : $L_1 = \{b^n a^n : n \ge 0\} \subseteq L = b^* a^*$ and L is regular, and L_1 is not regular	n

 ${\bf QUESTION} \ 1 \$ Use the constructions defined in the proof of theorem

A language is regular iff it is accepted by a finite automata

construct a finite automata M such that $L(M) = a(ab \cup aab)^*b$ $\;$ and

$$M = M_a (M_{ab} \cup M_{aab})^* M_b$$

Solution - follow DIRECTLY book definitions!