
CSE 230
Intermediate Programming

in C and C++
Stream Input/Output in C++

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel

Stream Input/Output
■ C++ standard libraries provide an extensive

set of input/output capabilities.
■ I/O occurs in streams of bytes.
– A stream is simply a sequence of bytes. In input

operations , the bytes flow from a device to main
memory. In output operations, the bytes flow from
main memory to a device.

■ C++ provides both low-level (i.e.
unformatted) and high-level (i.e. formatted)
I/O capabilities.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2

Stream Input/Output
■ Use the C++-style I/O exclusively in C++

programs, even though C-style I/O is
available to C++ programmers.
■ C++ I/O is type safe.
■ C++ enables a common treatment of I/O for

predefined types and user-defined types.
This commonality facilitates software
development and reuse.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3

Stream Input/Output Classes
ios

istream ostream

ifstream iostream ofstream

fstream

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4

Functions peek, putback and ignore
■ ignore skips over a designated number of

characters (default is one) or terminates upon
encountering a designated delimiter (default is
EOF), whichever comes first .
Examples:
cin.ignore(); cin.ignore(3); cin.ignore(25,’ ’);

■ peek returns the next character from an input
stream, but does not remove the character
from the stream.

■ putback places the previous character
obtained by a get from input back onto the
stream.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5

Unformatted I/O
■ Performed with read and write member

functions of istream and ostream,
respectively.
■ read inputs bytes to an built-in array of

chars in memory.
■ write outputs byes from a built-in array of

chars.
■ These bytes are not formatted. They are

input output raw bytes.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6

Stream Manipulators
■ C++ provides various manipulators that

perform formatting tasks.
■ manipulators provide capabilities such as:
– setting field widths and precisions.
– setting and unsetting format flags.
– setting the fill character in fields.
– flushing streams, inserting a new line in output
– inserting a null character in the output and
– skipping white space in the input stream.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7

Stream Format State Flags
■ Various format flags specify the kinds of formatting

to be performed during stream I/O operations.
■ The setf, unsetf and flags member functions control

the flag settings.
■ The parameterized stream manipulators setiosflags

and resetiosflags may be used instead of setf and
unsetf.

■ The bitwise-or operation, | , combines various
options into a single long value.

■ Calling the flags member function sets the options
and returns a long value containing the prior
options. The result value may be used to restore the
previous stream options.

■ flags function must specify settings of all the flags.
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8

Example: Format State Flags
■ ios::left left justify output. Padding appear to the right.
■ ios::right right justify output. Padding appear to the left.
■ ios::internal sign is left justified, magnitude is right-

justified.
■ ios::dec integers be treated as decimal values.
■ ios::oct integers be treated as octal values.
■ ios::hex integers be treated as hexadecimal values.
■ ios::skipws skip whitespace character on an input

stream.
■ ios::fixed output floating number with given precision.
■ ios::scientific output floating number in scientific

notation.
■ ios::showbase output the base, 0 for octal and 0x for hex.
■ ios::showpoint output with a decimal point & trailing zeros.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9

Stream Error States
■ The state of a stream may be tested through bits in

class ios, the base class for input/output streams.
■ The eofbit is set for an input stream after end-of-file is

encountered. The call cin.eof() returns true if end-of-file
has been encountered on cin and false otherwise.

■ The failbit is set when a format error occurs on the
stream. The call cin.fail() tests the status of this bit.

■ The badbit is set when an error occurs that results in
the loss of data. The call cin.bad() reports the status.

■ The goodbit is set if none of the above bits are set. The
call cin.goodbit() tests the status of this bit. I/O
operations must only be performed on “good” streams.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 10

Stream Error States (cont.)
■ The rdstate function returns the error state of

the stream, which could then be tested by a
switch statement that examines ios::eofbit,
ios::badbit, ios::failbit, ios::goodbit.

■ The clear function is normally used to restore a
stream’s status to “good” so I/O may proceed
on that stream.
cin.clear(); // default is to set the goodbit
cin.clear(ios::failbit); // set failbit, not clear it

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 11

