
CSE 230
Intermediate Programming

in C and C++
Polymorphism and Virtual

Functions

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel

Polymorphism
■ It is possible to design and implement systems that

are more easily extensible through polymorphism.
■ Polymorphism enables you to write more general

programs that process objects of classes that are
part of the same class hierarchy as if they were all
objects of the hierarchy’s base class.

■ Classes that do not exist during program
development can be added with little or no
modification to the generic part of the program

– as long as those classes are part of the hierarchy that is
being processed generically.

■ The only part of the program that will need
modification are those parts that require direct
knowledge of the particular class that is added to
the hierarchy.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2

Polymorphism: Example
■ One means of dealing with objects of different types is

to use polymorphism.
■ For example, in a hierarchy of shapes in which each

shape specifies its type as a data member, with
polymorphism the compiler could determine which print
function to call based on the type of the particular
object.

■ Polymorphism and virtual functions can eliminate the
need for switch logic. It also avoids errors typically
associated with equivalent switch logic and facilitates
testing, debugging and program maintenance.

■ Suppose a set of shape classes such as Circle, Triangle,
Square, etc. are all derived from base class Shape and
each class includes a separate draw function.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3

Virtual Functions
■ To draw any shape, we could simply call function

draw of base class Shape and let the program
determine which derived class draw function to use.

■ To enable this kind behavior, draw must be
declared in the base class (i.e. Shape) as a virtual
function and then each derived class overrides draw
to draw the appropriate shape.

■ A virtual function is a member function that you
expect to be redefined in derived classes. When you
refer to a derived class object using a pointer or a
reference to the base class, you can call a virtual
function for that object and execute the derived
class's version of the function.

■ Following may appear in Shape:
virtual void draw() const;

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4

Virtual Functions (cont.)
■ Once a function is declared virtual, it

remains virtual all the way down the
inheritance hierarchy from that point
even if it is not declared virtual when a
class overrides it. However, explicit
declaration promotes clarity.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5

Abstract and Concrete Classes
■ A class is made abstract by declaring one or

more of its member functions to be virtual
without definition.

■ No objects of an abstract base class can be
instantiated.

■ A pure virtual function is one with an initializer
of = 0 in its declaration as in:

virtual void draw() const = 0;
■ If no definition is supplied in a derived class for

a pure virtual function, then the function
remains to be pure. Consequently, the derived
class is also an abstract class.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6

Virtual Function Basics
■ Polymorphism
– Associating many meanings to one function
– Virtual functions provide this capability
– Fundamental principle of object-oriented

programming!

■ Virtual
– Existing in "essence" though not in fact

■ Virtual Function
– Can be "used" before it’s "defined"

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7

Shapes Example
■ Best explained by example:
■ Classes for several kinds of shapes
– Rectangles, circles, ovals, etc.
– Each shape is an object of different class
■ Rectangle data: height, width, center point
■ Circle data: center point, radius

■ All derive from one parent-class: Shape
■ Require function: draw()
– Different instructions for each shape

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8

Shapes Example 2
■ Each class needs different draw function
■ Can be called "draw" in each class, so:

Rectangle r;
Circle c;
r.draw(); //Calls Rectangle class’s draw
c.draw(); //Calls Circle class’s draw

■ Nothing new here yet…

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9

Shape Example: center()
■ Parent class Shape contains functions

that apply to "all" shapes; consider:
center(): moves a shape to center of screen

– Erases 1st, then re-draws

– So Shape::center() would use function draw()
to re-draw

– Complications!

■ Which draw() function?

■ From which class?

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 10

Shape Example: New Shape
■ Consider new kind of shape comes along:

Triangle class
derived from Shape class

■ Function center() inherited from Shape
– Will it work for triangles?
– It uses draw(), which is different for each shape!
– It will use Shape::draw() à won’t work for triangles

■ Want inherited function center() to use function
Triangle::draw() NOT function Shape::draw()

– But class Triangle wasn’t even WRITTEN when
Shape::center() was! Doesn’t know "triangles"!

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 11

Shapes Example: Virtual!
■ Virtual functions are the answer
■ Tells compiler:
– "Don’t know how function is implemented"
– "Wait until used in program"
– "Then get implementation from object

instance"

■ Called late binding or dynamic binding
– Virtual functions implement late binding
– Binding is done at run time

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Virtual Functions: Why Not All?
■ Clear advantages to virtual functions as

we’ve seen
■ One major disadvantage: overhead!
– Late binding is "on the fly", so programs run slower

■ So if virtual functions not needed, should
not be used

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Inner Workings of Virtual Functions
■ Don’t need to know how to use it!
– Principle of information hiding

■ Virtual function table
– Compiler creates it
– Has pointers for each virtual member function
– Points to location of correct code for that function

■ Objects of such classes also have pointer
– Points to virtual function table

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Virtual Destructors
■ Recall: destructors needed to de-allocate

dynamically allocated data
■ Consider:

Base *pBase = new Derived;
…
delete pBase;

– Would call base class destructor even though
pointing to Derived class object!

– Making destructor virtual fixes this!

■ Good policy for all destructors to be virtual

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

