
CSE 230
Intermediate Programming

in C and C++
Operator Overloading

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel

Introduction
■ How to enable C++’s operators to work with

class objects—a process called operator
overloading.
■ The jobs performed by overloaded

operators also can be performed by explicit
function calls, but operator notation is often
more natural.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2

General View
■ Consider the following examples:

Date d;
d.increment();

Bag b;
cout << b.getData(i);
b.setData(i, value);

Matrix x, y, z;
x.add(y);
multiply(x, y, z);

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3

General View (cont.)
■ How do you prefer the replacements below?

Date d;

d.increment(); d++;

Bag b;

cout << b.getData(i); cout << b[i];

b.setData(i,value); b[i] = value;

Matrix x, y, z;

x.add(y); x += y;

multiply(x, y, z); x = y * z;
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4

General View (cont.)
■ Manipulation on class objects are accomplished by

sending messages (by function calls) to the objects.
■ Function-call notation is cumbersome for certain

kinds of classes, especially mathematical classes.
■ It would be nice to use C++’s rich set of built-in

operators to specify object manipulation.
■ For example, operator << (or >>, +, -, etc.) has

several purposes as the stream-insertion and
bitwise left-shift.

■ Overloaded operators perform operation depending
on their context and set of operands.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5

Fundamentals of Operator
Overloading
■ Programmers can define user-defined types and use

operators with user-defined types.
■ New operators can not be created but existing operators

may be overloaded, so when they are used with class
objects, they have meaning appropriate to the new
types.

■ This is one of C++’s most powerful features.
■ The assignment (=) and address (&) operators may be

used with objects of any class without overloading. But
they can be overloaded also.

■ Programmer must explicitly write operator overloading
function to perform a desired operation. These functions
may be defined as a member function, friend, etc.

■ Extreme Misuse is not recommended! (* for addition, +
for division, etc.)

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6

Implementation Issues
■ When overloading (), [], -> or any other assignment

operators, the operator overloading function must
be declared as a class member.

■ For other operators, the operator overloaded
function can be non-member functions.

■ When an operator function is a member function,
the leftmost (or only) operand must be a class
object (or a reference to a class object) of the
operator’s class.

■ If the left operand is an object of a different class or
a built-in type, this function must be a non-member.

■ The keyword operator followed by the operator
replaces the name of a function, for example
className::operator =(…)

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7

Implementation Issues (cont.)
■ A unary operator for a class can be

overloaded as a class member function with
no arguments or as a non-member function
with one argument; that argument must be
either an object of the class or a reference to
an object of the class.

■ A binary operator can be overloaded as a
class member function with one argument or
as a non-member function with two
arguments (one of those argument must be
either an object of the class or a reference to
an object of the class).

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8

Restrictions on Operator
Overloading
■ Most of the C++ operators can be overloaded
■ Following operators are non-overloadable:

. .* :: ?:
■ The precedence of operators cannot be

changed by overloading, unless parenthesis is
used to force the order.

■ The associativity of an operator or the number
of operands cannot be changed by
overloading.

■ It is not possible to create new operators
■ The meaning of how an operator works on

built-in objects cannot be changed.
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9

Overloading Stream-Insertion &
Stream-Extraction
■ The stream-insertion and stream-extraction

operators can also be overloaded to perform
input and output for user-defined types.

■ When overloading << and >>, the operator
function needs to be as a friend (i.e. a non-
member function).

■ The overloaded << must have a left operand of
type ostream&(such as cout) in the expression
cout << classObject.

■ The overloaded >> must have a left operand of
type istream&(such as cin) in the expression
cin >> classObject.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 10

Overloading ++ and - -
■ Let d be of type Date. The pre-increment

expression:
++d;

■ generates the member function call:
d.operator++();

■ whose prototype is:
Date& Date::operator++();

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 11

Overloading ++ and - -
■ Let d be of type Date. The post-increment

expression:
d++;

■ generates the member function call:
d.opeartor++(0);

■ whose prototype is:
Date& Date::operator++(int);

■ Note that the 0 is strictly a “dummy value” to
make the argument list of operator++, used for
post-incrementing.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 12

Example of Overloading ++
Complex & Complex::operator++() // preincrement

{

real += 1;

return *this; // enables cascading

} // end operator++ function

Complex Complex::operator++(int) // postincrement

{

Complex temp = *this;

real += 1;

return temp; // enables cascading

} // end operator++ function

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 13

Example of Overloading - -
Complex & Complex::operator--()// predecrement

{

real -= 1;

return *this;

} // end operator– function

Complex Complex::operator--(int)//postdecrement

{

int temp = *this;

real -= 1;

return temp;

} // end operator-- function

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 14

Example of Overloading =
Employee & Employee::operator=(const Employee

&right)

{

if (right != this) //check for self-assignment

{

strcpy(firstname, right.firstname);

strcpy(lastname, right.lastname);

}

return *this; // enables cascading

} // end operator= function

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 15

Converting Between Types
■ It is often necessary to convert data of one type to

data of another type.
■ Certain conversions among built-in types are

performed by the compiler. Programmers can force
conversions by casting.

■ The programmer may specify how to convert among
user-defined types and built-in types.

■ Such conversions can be performed with conversion
constructors (or conversion/cast operator)- single
argument constructors that turn objects of other
types (including built-in types) into objects of a
particular class.

■ A conversion operator must be a non-static class
member function (it can’t be a friend function).

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 16

Converting Between Types(cont.)
■ The function prototype:

A::operator char *() const;
■ declares an overloaded cast operator function for

creating a temporary char * object out of an object of
user-defined type A.

■ An overloaded cast operator does not specify a return
type- the return type is the type to which the object is
being converted.

■ If s is a class object, when the compiler sees the
expression (char *)s, it generates the call
s.operator char *()

■ Cast operator functions can be defined to convert user-
defined types into built-in or other user-defined types.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 17

Converting Between Types(cont.)
■ The prototypes:

A::operator int() const;
A::operator otherClass() const;

■ declare functions for converting an object of a user-
defined type A into an integer and an object of a user-
defined type A into an object of otherClass.

■ When necessary, the compiler can call these functions
to create temporary objects. For example, if an object s
of a user-defined String class appears in a program at a
location where an ordinary (char *) is expected, such as

cout << s;
■ the compiler calls the cast operator function. With this

cast operator, the stream-insertion should not be
overloaded.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 18

Type Conversion
■ Implicit conversions can be controlled by

means of three member functions:
■ Single-argument constructors: allow implicit

conversion from a particular type to initialize
an object.

■ Assignment operator: allow implicit conversion
from a particular type on assignments.

■ Type-cast operator: allow implicit conversion to
a particular type.

■ To prohibit implicit type conversion use the
keyword explicit in front of the constructor.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 19

Copy Constructor
■ What is a copy constructor?
– A copy constructor is a member function which

initializes an object using another object of the
same class.

– A copy constructor has the following general
function prototype:
ClassName (const ClassName &old_obj);

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 20

Copy Constructor (cont.)
■ When is copy constructor called?

In C++, a Copy Constructor may be called in
following cases:

1. When an object of the class is returned by
value.

2. When an object of the class is passed (to a
function) by value as an argument.

3. When an object is constructed based on
another object of the same class.

4. When compiler generates a temporary
object.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 21

Copy Constructor (cont.)
■ When is user defined copy constructor

needed?
– If we don’t define our own copy constructor, the

C++ compiler creates a default copy constructor
for each class which does a member wise copy
between objects.

– We need to define our own copy constructor only
if an object has pointers or any run time
allocation of resource like file handle, a network
connection..etc.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 22

Copy Constructor (cont.)
■ Default constructor does only shallow

copy.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 23

Copy Constructor (cont.)
■ Deep copy is possible only with user

defined copy constructor.
– In user defined copy constructor, we make sure

that pointers (or references) of copied object point
to new memory locations.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 24

Copy constructor vs Assignment
Operator
■ Which of the following two statements call

copy constructor and which one calls
assignment operator?
MyClass t1, t2;

MyClass t3 = t1; // ----> (1)

t2 = t1; // -----> (2)

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 25

(1) Copy constructor
is called

(2) Assignment

