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Introduction
■ How to enable C++’s operators to work with 

class objects—a process called operator 
overloading.
■ The jobs performed by overloaded 

operators also can be performed by explicit 
function calls, but operator notation is often 
more natural.
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General View
■ Consider the following examples: 

Date d; 
d.increment(); 

Bag b;
cout << b.getData(i);                
b.setData(i, value);                    

Matrix x, y, z; 
x.add( y );                                 
multiply(x, y, z);                     
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General View (cont.)
■ How do you prefer the replacements below?

Date d; 

d.increment();           d++;

Bag b;

cout << b.getData(i);    cout << b[i];

b.setData(i,value);      b[i] = value;

Matrix x, y, z; 

x.add( y );             x += y;             

multiply(x, y, z);     x = y * z;               
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General View (cont.)
■ Manipulation on class objects are accomplished by 

sending messages (by function calls) to the objects. 
■ Function-call notation is cumbersome for certain 

kinds of classes, especially mathematical classes.  
■ It would be nice to use C++’s rich set of built-in 

operators to specify object manipulation.  
■ For example, operator << (or >>, +, -, etc.) has 

several purposes as the stream-insertion and 
bitwise left-shift.

■ Overloaded operators perform operation depending 
on their context and set of operands.  
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Fundamentals of Operator 
Overloading
■ Programmers can define user-defined types and use 

operators with user-defined types.  
■ New operators can not be created but existing operators 

may be overloaded, so when they are used with class 
objects, they have meaning appropriate to the new 
types.  

■ This is one of C++’s most powerful features.  
■ The assignment (=) and address (&) operators may be 

used with objects of any class without overloading. But 
they can be overloaded also.

■ Programmer must explicitly write operator overloading 
function to perform a desired operation. These functions 
may be defined as a member function, friend, etc.

■ Extreme Misuse is not recommended! (* for addition, + 
for division, etc.)
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Implementation Issues
■ When overloading (), [], -> or any other assignment 

operators, the operator overloading function must 
be declared as a class member.  

■ For other operators, the operator overloaded 
function can be non-member functions.  

■ When an operator function is a member function, 
the leftmost (or only) operand must be a class 
object (or a reference to a class object) of the 
operator’s class. 

■ If the left operand is an object of a different class or 
a built-in type, this function must be a non-member. 

■ The keyword operator followed by the operator 
replaces the name of a function, for example 
className::operator =(…)
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Implementation Issues (cont.)
■ A unary operator for a class can be 

overloaded as a class member function with 
no arguments or as a non-member function 
with one argument; that argument must be 
either an object of the class or a reference to 
an object of the class.   

■ A binary operator can be overloaded as a 
class member function with one argument or 
as a non-member function with two 
arguments (one of those argument must be 
either an object of the class or a reference to 
an object of the class).   

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8



Restrictions on Operator 
Overloading
■ Most of the C++ operators can be overloaded
■ Following operators are non-overloadable: 

.               .*            ::           ?:
■ The precedence of operators cannot be 

changed by overloading, unless parenthesis is 
used to force the order.

■ The associativity of an operator or the number 
of operands cannot be changed by 
overloading.   

■ It is not possible to create new operators
■ The meaning of how an operator works on 

built-in objects cannot be changed.  
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Overloading Stream-Insertion & 
Stream-Extraction
■ The stream-insertion and stream-extraction 

operators can also be overloaded to perform 
input and output for user-defined types.  

■ When overloading << and  >>, the operator 
function needs to be as a friend (i.e. a non-
member function). 

■ The overloaded << must have a left operand of 
type ostream&(such as cout) in the expression 
cout << classObject. 

■ The overloaded >> must have a left operand of 
type istream&(such as cin) in the expression 
cin >> classObject.
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Overloading ++ and - -
■ Let d be of type Date. The pre-increment 

expression:  
++d;  

■ generates the member function call:  
d.operator++();

■ whose prototype is:  
Date& Date::operator++();  
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Overloading ++ and - -
■ Let d be of type Date. The post-increment 

expression:  
d++;  

■ generates the member function call:  
d.opeartor++(0);

■ whose prototype is:  
Date& Date::operator++(int);   

■ Note that the 0 is strictly a “dummy value” to 
make the argument list of operator++, used for 
post-incrementing.  
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Example of Overloading ++
Complex & Complex::operator++( )    // preincrement

{

real += 1; 

return *this;                    // enables cascading

} // end operator++ function

Complex Complex::operator++(int)  // postincrement

{

Complex temp = *this;

real += 1; 

return temp;                    // enables cascading

} // end operator++ function
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Example of Overloading - -
Complex & Complex::operator--( )// predecrement

{

real -= 1; 

return *this; 

} // end operator– function

Complex Complex::operator--(int)//postdecrement

{

int temp = *this;

real -= 1; 

return temp;

} // end operator-- function
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Example of Overloading = 
Employee & Employee::operator=( const Employee 

&right )

{

if ( right != this ) //check for self-assignment

{

strcpy(firstname, right.firstname);

strcpy(lastname, right.lastname);     

}  

return *this;   // enables cascading 

} // end operator= function
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Converting Between Types 
■ It is often necessary to convert data of one type to 

data of another type. 
■ Certain conversions among built-in types are 

performed by the compiler. Programmers can force 
conversions by casting. 

■ The programmer may specify how to convert among 
user-defined types and built-in types. 

■ Such conversions can be performed with conversion 
constructors (or conversion/cast operator)- single 
argument constructors that turn objects of other 
types (including built-in types) into objects of a 
particular class. 

■ A conversion operator must be a non-static class 
member function (it can’t be a friend function).   
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Converting Between Types(cont.) 
■ The function prototype:  

A::operator char *() const;
■ declares an overloaded cast operator function for 

creating a temporary char * object out of an object of 
user-defined type A. 

■ An overloaded cast operator does not specify a return 
type- the return type is the type to which the object is 
being converted.  

■ If s is a class object, when the compiler sees the 
expression (char *)s, it  generates the call 
s.operator char *()

■ Cast operator functions can be defined to convert user-
defined types into built-in or other user-defined types.  
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Converting Between Types(cont.) 
■ The prototypes:  

A::operator int() const;
A::operator otherClass() const;

■ declare functions for converting an object of a user-
defined type A into an integer and an object of a user-
defined type A into an object of otherClass. 

■ When necessary, the compiler can call these functions 
to create temporary objects. For example, if an object  s
of a user-defined String class appears in a program at a 
location where an ordinary (char *) is expected, such as 

cout << s; 
■ the compiler calls the cast operator function. With this 

cast operator, the stream-insertion should not be 
overloaded.
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Type Conversion
■ Implicit conversions can be controlled by 

means of three member functions:
■ Single-argument constructors: allow implicit 

conversion from a particular type to initialize 
an object.

■ Assignment operator: allow implicit conversion 
from a particular type on assignments.

■ Type-cast operator: allow implicit conversion to 
a particular type.

■ To prohibit implicit type conversion use the 
keyword explicit in front of the constructor.
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Copy Constructor
■ What is a copy constructor?
– A copy constructor is a member function which 

initializes an object using another object of the 
same class.

– A copy constructor has the following general 
function prototype:
ClassName (const ClassName &old_obj); 
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Copy Constructor (cont.)
■ When is copy constructor called?

In C++, a Copy Constructor may be called in 
following cases:

1. When an object of the class is returned by 
value.

2. When an object of the class is passed (to a 
function) by value as an argument.

3. When an object is constructed based on 
another object of the same class.

4. When compiler generates a temporary 
object.
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Copy Constructor (cont.)
■ When is user defined copy constructor 

needed?
– If we don’t define our own copy constructor, the 

C++ compiler creates a default copy constructor 
for each class which does a member wise copy 
between objects. 

– We need to define our own copy constructor only 
if an object has pointers or any run time 
allocation of resource like file handle, a network 
connection..etc.
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Copy Constructor (cont.)
■ Default constructor does only shallow 

copy.
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Copy Constructor (cont.)
■ Deep copy is possible only with user 

defined copy constructor.
– In user defined copy constructor, we make sure 

that pointers (or references) of copied object point 
to new memory locations.
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Copy constructor vs Assignment 
Operator
■ Which of the following two statements call 

copy constructor and which one calls 
assignment operator?
MyClass t1, t2; 

MyClass t3 = t1; // ----> (1) 

t2 = t1; // -----> (2) 
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(1) Copy constructor 
is called

(2) Assignment


