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Object Oriented Programming: 
Classes
■ Classes encapsulate data (attribute) and 

functions (behavior); the data and functions of 
a class are intimately tied together. 

■ A class can be reused many times to make 
many objects of the same class.  

■ Class objects communicate with one another 
with well-defined member functions, and their 
data members are hidden within themselves.   

■ The unit of OOP is the class from which objects 
are eventually instantiated.  

■ Groups of actions that perform some task are 
formed into these member functions.
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Object Oriented Programming: 
Classes
■ The focus of attention in OOP is on classes rather 

than functions.  
■ In C, a struct is a collection of related variables 

(data), whereas in C++, a class contains data 
members and member functions. 

– In the C++ community, the terms data members and 
member functions refer to instance variables and methods 
respectively.  

■ The data members keep the current state of an 
object, and member functions allow a user of the 
object to query the object (find out its state) or 
modify the object (alter its state).

■ In C++, a class definition is considered as a user-
defined (or programmer-defined) type.       
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Classes in C++
■ A class definition begins with the keyword class

and terminates with a semicolon (;). It is considered 
as a user-defined type. 

– Class name may differ from the filename.
■ The public: and private: are called member 

access specifier.
■ Any member defined after public (and before the 

next access specifiers) is accessible wherever the 
program has access to the object of that class. 

■ Any member defined after private (and up to the 
next access specifiers) is accessible only to member 
functions of the class.  Also, default mode in a class 
is private.

■ Access specifiers are always followed by a colon(:), 
and can appear multiple times in any order in class.  
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Example: 
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Separating the Interface
■ Declaring member functions inside a class 

(via their prototypes) and defining those 
members outside the class separates the 
interface of a class from its 
implementation.       
■ This promotes good software engineering.
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Example:
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Defining the Implementation
■ Member functions may be defined in the 

same file as the class definition.  
■ Function definition must be preceded by the 

class name followed by the scope resolution 
operator (::).

– Informs the compiler in what class this member 
function belongs to
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Class Type
■ Once the class is defined, it can be used as 

a type in object, array and pointer 
definitions as follows:

■ Time sunset;                      // object of class Time
■ Time timeArray[10];         // array of Time objects
■ Time *pointerToTime; // pointer to a Time object
■ Time &refTime = sunset;// reference to a Time object 
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The initial military time is 00:00
The initial standard time is 12:00:00 AM

The initial military time is 13:27
The initial standard time is 1:27:06 PM

After attempting invalid settings:
Military time: 00:00
Standard time: 12:00:00 AM



Creating Header Files
■ Each class definition is normally placed in a 

header (.h) file, and function definitions are 
placed in source-code (.cpp) file of the 
same base name. 
■ The header files are included in each file 

the class is used. 
■ The source-code (.cpp) file is eventually 

compiled and linked with the main program. 
Also include the .cpp files in each file the 
class is used. 
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time.h
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time.cpp
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test.cpp
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Default Arguments with Constructors
■ Constructors can contain default arguments.  
■ By providing default arguments to the 

constructor, even if no values are provided in 
a constructor call, the object is still 
guaranteed to be initialized to a consistent 
state.

■ Parameter names can be omitted as usual, 
i.e. the type and its corresponding value 
separated by equal sign is sufficient. For 
example:

Time( int = 0, int = 0, int = 0);
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Destructors
■ A destructor is a special member function of a 

class.  
■ The name of the destructor is the tilde (~) 

character followed by the class name. 
■ In a sense, destructor is a complement of 

constructor.
■ Destructor is called when an object is 

destroyed. For automatic objects, when 
program execution leaves the scope in which 
an object was instantiated.

■ Destructors perform “termination 
housekeeping”, not  actually release the 
objects memory.  
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Calling Constructors and 
Destructors
■ Constructors and destructors are called automatically. 

■ The order depends on the order in which execution enters 
and leaves the scope in which objects are instantiated.

■ Destructor calls are made in the reverse order of the 
constructor calls. However, the storage class of objects 
can alter the order in which destructors are called. 

■ For global objects, constructors are called before any other 
objects, and corresponding destructors are called when 
main terminates normally or exit is called.

■ For automatic local objects, constructors are called when 
the execution reaches the point where object is defined. 
Destructors are called when objects leave scope normally.

■ For static objects, constructors are called only once, and 
corresponding destructor is called after main terminates. 18



Assignment of Objects
■ The assignment operator (=) can be used to 

assign an object to another object of the 
same type. 
■ Assigning objects is by default performed by 

memberwise copy – each member of one 
object is copied individually to the same 
member in another object. 
■ Memberwise copy can cause serious 

problems when used with a class whose 
data members contain dynamically 
allocated storage.
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Using Data Members
■ A class’s  private data members can be 

accessed only by member functions(and 
friends).  
■ Classes often provide public member 

functions to allow clients of the class to set 
(i.e. write) or get (i.e. read) the values of 
private data members. 
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A Subtle Trap: reference
■ A reference to a an object is an alias 

for the name of the object and hence 
may be used as a object. 
■ It is possible that a public member 

function of a class return a non-const
reference to a private data member of 
that class. 
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