
CSE 230
Intermediate Programming

in C and C++
Classes, Objects and

Strings

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel

Object Oriented Programming:
Classes
■ Classes encapsulate data (attribute) and

functions (behavior); the data and functions of
a class are intimately tied together.

■ A class can be reused many times to make
many objects of the same class.

■ Class objects communicate with one another
with well-defined member functions, and their
data members are hidden within themselves.

■ The unit of OOP is the class from which objects
are eventually instantiated.

■ Groups of actions that perform some task are
formed into these member functions.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2

Object Oriented Programming:
Classes
■ The focus of attention in OOP is on classes rather

than functions.
■ In C, a struct is a collection of related variables

(data), whereas in C++, a class contains data
members and member functions.

– In the C++ community, the terms data members and
member functions refer to instance variables and methods
respectively.

■ The data members keep the current state of an
object, and member functions allow a user of the
object to query the object (find out its state) or
modify the object (alter its state).

■ In C++, a class definition is considered as a user-
defined (or programmer-defined) type.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3

Classes in C++
■ A class definition begins with the keyword class

and terminates with a semicolon (;). It is considered
as a user-defined type.

– Class name may differ from the filename.
■ The public: and private: are called member

access specifier.
■ Any member defined after public (and before the

next access specifiers) is accessible wherever the
program has access to the object of that class.

■ Any member defined after private (and up to the
next access specifiers) is accessible only to member
functions of the class. Also, default mode in a class
is private.

■ Access specifiers are always followed by a colon(:),
and can appear multiple times in any order in class.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4

Example:

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5

Separating the Interface
■ Declaring member functions inside a class

(via their prototypes) and defining those
members outside the class separates the
interface of a class from its
implementation.
■ This promotes good software engineering.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6

Example:

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7

Defining the Implementation
■ Member functions may be defined in the

same file as the class definition.
■ Function definition must be preceded by the

class name followed by the scope resolution
operator (::).

– Informs the compiler in what class this member
function belongs to

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8

Im
pl

em
en

ta
tio

n

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9

Class Type
■ Once the class is defined, it can be used as

a type in object, array and pointer
definitions as follows:

■ Time sunset; // object of class Time
■ Time timeArray[10]; // array of Time objects
■ Time *pointerToTime; // pointer to a Time object
■ Time &refTime = sunset;// reference to a Time object

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 10

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 11

The initial military time is 00:00
The initial standard time is 12:00:00 AM

The initial military time is 13:27
The initial standard time is 1:27:06 PM

After attempting invalid settings:
Military time: 00:00
Standard time: 12:00:00 AM

Creating Header Files
■ Each class definition is normally placed in a

header (.h) file, and function definitions are
placed in source-code (.cpp) file of the
same base name.
■ The header files are included in each file

the class is used.
■ The source-code (.cpp) file is eventually

compiled and linked with the main program.
Also include the .cpp files in each file the
class is used.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 12

time.h

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 13

time.cpp

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 14

test.cpp

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 15

Default Arguments with Constructors
■ Constructors can contain default arguments.
■ By providing default arguments to the

constructor, even if no values are provided in
a constructor call, the object is still
guaranteed to be initialized to a consistent
state.

■ Parameter names can be omitted as usual,
i.e. the type and its corresponding value
separated by equal sign is sufficient. For
example:

Time(int = 0, int = 0, int = 0);
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 16

Destructors
■ A destructor is a special member function of a

class.
■ The name of the destructor is the tilde (~)

character followed by the class name.
■ In a sense, destructor is a complement of

constructor.
■ Destructor is called when an object is

destroyed. For automatic objects, when
program execution leaves the scope in which
an object was instantiated.

■ Destructors perform “termination
housekeeping”, not actually release the
objects memory.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 17

Calling Constructors and
Destructors
■ Constructors and destructors are called automatically.

■ The order depends on the order in which execution enters
and leaves the scope in which objects are instantiated.

■ Destructor calls are made in the reverse order of the
constructor calls. However, the storage class of objects
can alter the order in which destructors are called.

■ For global objects, constructors are called before any other
objects, and corresponding destructors are called when
main terminates normally or exit is called.

■ For automatic local objects, constructors are called when
the execution reaches the point where object is defined.
Destructors are called when objects leave scope normally.

■ For static objects, constructors are called only once, and
corresponding destructor is called after main terminates. 18

Assignment of Objects
■ The assignment operator (=) can be used to

assign an object to another object of the
same type.
■ Assigning objects is by default performed by

memberwise copy – each member of one
object is copied individually to the same
member in another object.
■ Memberwise copy can cause serious

problems when used with a class whose
data members contain dynamically
allocated storage.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 19

Using Data Members
■ A class’s private data members can be

accessed only by member functions(and
friends).
■ Classes often provide public member

functions to allow clients of the class to set
(i.e. write) or get (i.e. read) the values of
private data members.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 20

A Subtle Trap: reference
■ A reference to a an object is an alias

for the name of the object and hence
may be used as a object.
■ It is possible that a public member

function of a class return a non-const
reference to a private data member of
that class.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 21

