
CSE 230
Intermediate Programming

in C and C++
C++ as a Better C:

Introduction to OOP

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel

Introduction
■ C++, an extension of C, was developed by

Bjarne Stroustrup in 1979 at Bell
Laboratories.
■ C++ provides a number of features that

“spruce up” the C language
■ C++ was originally called “C with classes”
■ The increment operator ++ indicates that

C++ is an enhanced version of C
■ The latest version is C++11 standardized

through ANSI and ISO
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2

Programming Paradigms
■ C++ provides Two important programming

paradigms:
1. Object Oriented Programming (OOP)
– Classes
– Encapsulation
– Objects
– Operator overloading
– Inheritance
– Polymorphism
2. Generic Programming
– Function templates
– Class templates

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3

C++ Basics: File name in C vs C++
■ In C, file names have the .c (lowercase)

extension is used
■ In C++, file names can have one of several

extensions, such as .cpp, .cxx or .C
(uppercase)
■ We will use .cpp

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4

How to run your C++ code in gcc?
g++ test.c –o test
./test
■ For C++11:
g++ -std=c++11 test.c –o test
./test

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5

Your First Code in C++: Adding
Two Integers

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6

Tells the C++ preprocessor to include
the content of input/output stream header

Standard output stream object and
Stream insertion operator <<

Standard input stream object
Stream extraction operator >>

Stream manipulator
Outputs a newline

std:: is required before cout, cin,
endl. It specifies that we are
using names that belongs to
“namespace” std

Your First Code in C++: Adding
Two Integers

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7

Concatenated stream outputs,
Cascade outputs of different
types

Your First Code in C++: Adding
Two Integers

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8

No return statement in main().
If execution reaches the end of
main(), it automatically returns 0

Your First Code in C++: Adding
Two Integers

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9

Operator Overloading

C++ Standard Library
§ C++ programs consist of pieces called classes

and functions.
§ Most C++ programmers take advantage of the

rich collections of classes and functions in the
C++ Standard Library.

§ Two parts to learning the C++ “world.”
1. The C++ language itself, and
2. How to use the classes and functions in the

C++ Standard Library.
§ Many special-purpose class libraries are

supplied by independent software vendors.
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 10

C++ Header Files

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 11

C++ Header Files

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 12

And more …

Advantage of C++
■ Creating own functions and classes
– You will know exactly how they work

■ Using existing collections of functions and classes
from C++ Standard Library

– By including suitable header files, containing the
prototypes of functions and definitions of various classes

– You can also create your custom header file

■ Inline Function
– C++ provides inline function to reduce the overhead

associated with function calls
– It is used specifically for small functions

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 13

D
ef

in
in

g
an

 In
lin

e
Fu

nc
tio

n

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 14

using namespace std;

C++ Keywords

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 15

References and Reference
Parameters
■ Function arguments are passed in two ways
– Call-by-value
■ A copy of the arguments value is made
– Call-by-reference
■ Caller gives called function the ability to access caller’s

data directly
■ Pro: No copying overhead like call-by-value for large data
■ Con: called function can corrupt the caller’s data
– To indicate that a function parameter is passed by

reference, we write
type &var_name;

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 16

Passing by pointer vs Passing by
reference
void swap(int *a, int *b){

int temp;

temp = *a;

*a = *b;

*b = temp;

}

int a = 10, b = 20;

swap(&a, &b);

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 17

void swap(int &a, int &b){

int temp;

temp = a;

a = b;

b = temp;

}

int a = 10, b = 20;

swap(a, b);

Difference in Reference variable
and pointer variable
■ A reference must refer to an object. Since

references can’t be NULL, they are safer to
use.

■ A pointer is a variable that holds a memory
address. A reference has the same memory
address as the item it references.

■ A pointer to a class/struct uses ‘->'(arrow
operator) to access it’s members whereas a
reference uses a ‘.'(dot operator)

■ A pointer needs to be dereferenced with * to
access the memory location it points to,
whereas a reference can be used directly.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 18

References as Alias within a
function

int count = 1;

int &cRef = count;

cRef++;// increment count
■ Taking address of a reference and comparing references do

not create an error, each operation occurs on the variable
for which the reference is an alias.

■ const int &i is a reference to a constant integer type

■ Unless it is reference to a constant a reference is an lvalue
(e.g., variable name)

■ It is not a constant or expression that returns an rvalue
(e.g., the result of a calculation)

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 19

Returning a reference from a
function
■ Returning reference from a function is

dangerous
■ When returning reference of a variable from

a function, that variable must be static
■ If returned reference is for an automatic

variable then the behavior is undefined
■ Such references are called dangling

references

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 20

Unary scope resolution operator ::

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 21

Accessing the global variable

Function Overloading
■ Several functions with same name, different parameter list

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 22

Function Overloading
■ Several functions with same name, different parameter list

■ Compiler selects the proper function by number, type and
order of parameters

■ A common error: Creating overloaded function with
identical parameter lists and different return types [gives
compilation error].

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 23

Introduction to Object Technology

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 24

■ Objects, or more precisely the classes objects come
from, are essentially reusable software components.

– There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc.

– Almost any noun can be reasonably represented as a software
object in terms of attributes (e.g., name, color and size) and
behaviors (e.g., calculating, moving and communicating).

■ Using a modular, object-oriented design-and-
implementation approach can make software-
development groups much more productive than was
possible with earlier techniques

– object-oriented programs are often easier to understand, correct
and modify.

Introduction to Object Technology:
Example
■ The Automobile as an Object
– Let’s begin with a simple analogy.
– Suppose you want to drive a car and make it go faster

by pressing its accelerator pedal.
– Before you can drive a car, someone has to design it.
– A car typically begins as engineering drawings, similar

to the blueprints that describe the design of a house.
– Drawings include the design for an accelerator pedal.
– Pedal hides from the driver the complex mechanisms

that actually make the car go faster, just as the brake
pedal hides the mechanisms that slow the car, and
the steering wheel hides the mechanisms that turn
the car.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 25

Introduction to Object Technology:
Example
– Enables people with little or no knowledge of how

engines, braking and steering mechanisms work
to drive a car easily.

– Before you can drive a car, it must be built from
the engineering drawings that describe it.

– A completed car has an actual accelerator pedal
to make the car go faster, but even that’s not
enough—the car won’t accelerate on its own
(hopefully!), so the driver must press the pedal to
accelerate the car.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 26

Introduction to Object Technology

Member Functions and Classes
§ Performing a task in a program requires a

member function
§ Houses the program statements that

actually perform its task.
§ Hides these statements from its user, just

as the accelerator pedal of a car hides
from the driver the mechanisms of making
the car go faster.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 27

Introduction to Object Technology
■ In C++, we create a program unit called a

class to house the set of member functions
that perform the class’s tasks.
■ A class is similar in concept to a car’s

engineering drawings, which house the
design of an accelerator pedal, steering
wheel, and so on.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 28

Introduction to Object Technology
Instantiation
§ Just as someone has to build a car from its

engineering drawings before you can
actually drive a car, you must build an
object from a class before a program can
perform the tasks that the class’s methods
define.

§ An object is then referred to as an instance
of its class.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 29

Introduction to Object Technology
Reuse
§ Just as a car’s engineering drawings can be

reused many times to build many cars, you
can reuse a class many times to build many
objects.

§ Reuse of existing classes when building
new classes and programs saves time and
effort.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 30

Introduction to Object Technology
Messages and Member Function Calls
§ When you drive a car, pressing its gas pedal

sends a message to the car to perform a
task—that is, to go faster.

§ Similarly, you send messages to an object.
§ Each message is implemented as a

member function call that tells a member
function of the object to perform its task.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 31

Introduction to Object Technology
Attributes and Data Members
§ A car has attributes
§ Color, its number of doors, the amount of gas

in its tank, its current speed and its record of
total miles driven (i.e., its odometer reading).

§ The car’s attributes are represented as part of
its design in its engineering diagrams.

§ Every car maintains its own attributes.
§ Each car knows how much gas is in its own gas

tank, but not how much is in the tanks of other
cars.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 32

Introduction to Object Technology
■ An object has attributes that it carries along as

it’s used in a program.
■ Specified as part of the object’s class.
■ A bank account object has a balance attribute

that represents the amount of money in the
account.

■ Each bank account object knows the balance
in the account it represents, but not the
balances of the other accounts in the bank.

■ Attributes are specified by the class’s data
members.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 33

Introduction to Object Technology
Encapsulation
§ Classes encapsulate (i.e., wrap) attributes and

member functions into objects—an object’s
attributes and member functions are
intimately related.

§ Objects may communicate with one another,
but they’re normally not allowed to know how
other objects are implemented—
implementation details are hidden within the
objects themselves.

§ Information hiding is crucial to good software
engineering.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 34

Introduction to Object Technology
Inheritance
§ A new class of objects can be created

quickly and conveniently by inheritance—the
new class absorbs the characteristics of an
existing class, possibly customizing them
and adding unique characteristics of its
own.

§ In our car analogy, an object of class
“convertible” certainly is an object of the
more general class “automobile,” but more
specifically, the roof can be raised or
lowered.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 35

Introduction to Object Technology
Object-Oriented Analysis and Design (OOAD)
§ How will you create the code (i.e., the program

instructions) for your programs?
§ Follow a detailed analysis process for

determining your project’s requirements (i.e.,
defining what the system is supposed to do)

§ Develop a design that satisfies them (i.e.,
deciding how the system should do it).

§ Carefully review the design (and have your
design reviewed by other software
professionals) before writing any code.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 36

Introduction to Object Technology
§ If this process involves analyzing and

designing your system from an object-
oriented point of view, it’s called an object-
oriented analysis and design (OOAD)
process.

§ Languages like C++, Java are object
oriented.

§ Object-oriented programming (OOP) allows
you to implement an object-oriented design
as a working system.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 37

