CSE 230
Intermediate Programming

in C and C++
C++ as a Better C:
Introduction to OOP

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
/~cse230/

Ref. Book: C How to Program, 8" edition by Deitel and Deitel

Introduction

m C++, an extension of C, was developed by
Bjarne Stroustrup in 1979 at Bell

Laboratories.

m C++ provides a number of features that
“spruce up” the C language

m C++ was origina
m The incremento

ly called “C with classes”
nerator ++ indicates that

C++ is an enhanced version of C

m [he latest version is C++11 standardized
through ANSI and ISO

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Programming Paradigms

m C++ provides Two important programming
paradigms:

1. Object Oriented Programming (OOP)
- Classes

- Encapsulation

- Objects

— Operator overloading

- Inheritance

— Polymorphism

2. Generic Programming

- Function templates
- Class temglate

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

C++ Basics: File name in C vs C++

m In C, file names have the .c (lowercase)
extension is used

m In C++, file names can have one of several
extensions, such as .cpp, .cxx or .C
(Uppercase)

m We will use .cpp

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

How to run your C++ code in gcc?

g++ test.c -o test

/test
m For C++11:
g++ -std=c++11 test.c -0 test

/test

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Your First Code in C++: Adding
TWO Integers Tells the C++ preprocessor to include

the content of input/output stream header
-

I // Fig. 15.1: figl5_01.cpp

2 // Addition program displays the sum of two numbers.

3 #include <iostream> // allows program _to perform input and outp

4 Standard output stream obJect and

2 ;"t main() Stream insertion operator <<

7 int numberl; // first—mTeger to add Standard input stream object
8 Stream extraotlon operator >>
9 std::cout << ; // prompt user

10 std::cin >> numberl; // read first integer from user 1nto numberl

|

12 int number2; // second integer to add Stream manipulator

13 int sum; // sum of numberl and number?2 .

14 Outputs a newline

15 std::cout << ; /// prompt user for data

16 std::cin >> number2; // read second intfger from user into number2

17 sum = numberl + number2; // add the nyfibers; store result in sum

I8 std::cout << << sum << std::endl; // display sum; end Tline

19 } // end function main . . .
std:: is required before cout, cin,

e (s s endl. It specifies that we are
Enter second integer: 72 using names that belongs to
Sum 1s 117 “ ”

namespace” std

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Your First Code in C++: Adding
Two Integers

I // Fig. 15.1: figl5_01.cpp

2 // Addition program that displays the sum of two numbers.

3 #include <iostream> // allows program to perform input and output

4

5 int main(Q

6 {

7 int numberl; // first integer to add

8

9 std::cout << ; // prompt user for data

10 std::cin >> numberl; // read first integer from user into numberl

11 = Concatenated stream outputs,
12 int number2; // second integer to add .

13 int sum; // sum of numberl gnd humber?2 Cascade OUtDUtS of different
14 types

15 std::cout << ; // prompt user for data

16 std::cin >> number2; // read _s€cond integer from user into number2

17 sum = numberl + number?: add the numbers; store result in sum

I8 std::cout << << sum << std::endl;| // display sum; end Tline
19 } // end function main

std::cout << << numberl + number2 << std::endl;

-

Sum 1is 117

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Your First Code in C++: Adding
Two Integers

I // Fig. 15.1: figl5_01.cpp

2 // Addition program that displays the sum of two numbers.

3 #include <iostream> // allows program to perform input and output

4

5 dint main(Q)

6 {

7 int numberl; // first integer to add

8

9 std::cout << ; // prompt user for data

10 std::cin >> numberl; // read first integer from user into numberl

|

12 int number2; // second integer to add

13 int sum; // sum of numberl and number?2

14

15 std::cout << ; // prompt user for data

16 std::cin >> number2; // read second integer from user into number2

17 sum = numberl + number2; // add the numbers; store result in sum

I8 std::cout << << sum << std::endl; // display sum; end Tline

19} // end function main No return statement in main().
_ _ It execution reaches the end of

Enter first integer: 45 . . .

Sum is 117

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Your First Code in C++: Adding
Two Integers

I // Fig. 15.1: figl5_01l.cpp

2 // Addition program that displays the sum of two numbers.

3 #include <iostream> // allows program to perform input and output

4

5 dint main(Q)

6 {

7 int numberl; // first integer to add

8

9 std::cout << ; // prompt user for data

10 std::cin >> numberl; // read first integer from user into numberl
|

12 int number2; // second integer to add

13 int sum; // sum of numberl and number?2 Operator Overloading
14

15 std::cout << ; // prompt user for data

16 std::cin >>*number2; // read seeBnd integer from user into number2
17 sum = numberl + number2; // d the numbers; store result in sum
I8 std::cout << <«’sum << std::endl; // display sum; end Tline

19 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum 1is 117

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

C++ Standard Library

C++ programs consist of pieces called classes
and functions.

Most C++ programmers take advantage of the
rich collections of classes and functions in the
C++ Standard Library.

Two parts to learning the C++ “world.”
The C++ language itself, and

How to use the classes and functions in the
C++ Standard Library.

Many special-purpose class libraries are
supplied by independent software vendors.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

10

C++ Header Files

C++ Standard

Library header
file

<iostream>

<iomanip>

<cmath>

<cstdlib>

<ctime>

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

Explanation

Contains function prototypes for the C++ standard input and standard
output functions. This header file replaces header file <iostream.h>. This
header is discussed in detail in Chapter 23, Stream Input/Output.

Contains function prototypes for stream manipulators that format
streams of data. This header file replaces header file <iomanip.h>. This
header is used in Chapter 23.

Contains function prototypes for math library functions. This header file
replaces header file <math.h>.

Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. This header file replaces header file <std1ib>.

Contains function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>.

These header files contain classes that implement the C++ Standard
Library containers. Containers store data during a program’s execution.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

11

C++ Header Files

<cctype> Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase
letters to uppercase letters and vice versa. This header file replaces header
file <ctype.hs>.

<cstring> Contains function prototypes for C-style string-processing functions.
This header file replaces header file <string.hs.

<typeinfo> Contains classes for runtime type identification (determining data types
at execution time).

<exception>, These header files contain classes that are used for exception handling

<stdexcept> (discussed in Chapter 24).

<memory> Contains classes and functions used by the C++ Standard Library to allo-
cate memory to the C++ Standard Library containers. This header is used
in Chapter 24.

<fstream> Contains function prototypes for functions that perform input from files

on disk and output to files on disk. This header file replaces header file
<fstream.h>.

<string> Contains the definition of class string from the C++ Standard Library.
And more ...

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

Advantage of C++

m Creating own functions and classes
— You will know exactly how they work

m Using existing collections of functions and classes
from C++ Standard Library

- By including suitable header files, containing the
prototypes of functions and definitions of various classes

— You can also create your custom header file

m Inline Function

- C++ provides inline function to reduce the overhead
associated with function calls

- It is used specifically for small functions

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 13

// Fig. 15.3: figl5_03.cpp

// inline function that calculates the volume of a cube.
#include <iostream>

using std::cout; using namespace std;
using std::cin; .—

using std::endl;

IoN

Funct

// Definition of inline function cube. Definition of function appears
// before function is called, so a function prototype is not required.
// First Tine of function definition acts as the prototype.

inline double cube(const double side)

{

Ine

w

return side * side * side; // calculate the cube of side

E 14 } // end function cube
15
— 16 1int main()
17 {
C I8 double sideValue; // stores value entered by user
©
20 for (int i = 1; 1 <= 25 i++)
o) T
C 22 cout << ;
- — 23 cin >> sideValue; // read value from user
24
_E 25 // calculate cube of sideValue and display result
(¥ = 26 cout <<
(1) 27 << sideValue << << cube(sideValue) << endl;
28 }
D 29 } // end main

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 14

C++ Keywords

C++ keywords

Keywords common to the C and C++ programming languages

auto
continue
enum

if

short
switch
volatile

break
default
extern
int
signed
typedef
while

C++-only keywords

and

bool
delete
friend
not
private
template
typeid
Xor

and_eq

catch
dynamic_cast
inline
not_eq
protected
this
typename
Xor_eq

case
do
float
Tong
sizeof
union

asm
class
explicit
mutable
operator
public
throw
using

char
double
for
register
static
unsigned

bitand

compl

export

hamespace

or
reinterpret_cast
true

virtual

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

const
else
goto
return
struct
void

bitor
const_cast
false

new

or_eq
static_cast
try

wchar_t

15

References and Reference
Parameters

m Function arguments are passed in two ways

Call-by-value
A copy of the arguments value is made

Call-by-reference

Caller gives called function the ability to access caller’s
data directly

m Pro: No copying overhead like call-by-value for large data

Con: called function can corrupt the caller’s data

To indicate that a function parameter is passed by
reference, we write

type &var name;

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 16

Passing by pointer vs Passing by
reference
void swap(int *a, int *b){ void swap(int &a, int &b){

int temp; int temp;
temp = *a; temp = a;
*a = *Db; a=b;
*b = temp; b =temp;
})
inta =10, b = 20; inta =10, b = 20;
swap(&a, &b); swap(a, b);

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

17

Difference in Reference variable
and pointer variable

m A reference must refer to an object. Since
references can’t be NULL, they are safer to
use.

m A pointer is a variable that holds a memory
address. A reference has the same memory
address as the item it references.

m A pointer to a class/struct uses ->'(arrow
operator) to access it’'s members whereas a
reference uses a ‘.'(dot operator)

m A pointer needs to be dereferenced with * to
access the memory location it points to,
whereas a reference can be used directly.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 18

References as Alias within a

function
int count = 1;
int &cRef = count;

cRef++;// increment count

m Taking address of a reference and comparing references do
not create an error, each operation occurs on the variable
for which the reference is an alias.

m const int &i is areference to a constant integer type

m Unless it is reference to a constant a reference is an lvalue
(e.g., variable name)

m Itis not a constant or expression that returns an rvalue
(e.g., the result of a calculation)

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 19

Returning a reference from a
function

m Returning reference from a function is
dangerous

m When returning reference of a variable from
a function, that variable must be static

m If returned reference is for an automatic
variable then the behavior is undefined

m Such references are called dangling
references

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 20

Unary scope resolution operator : :

O~NOWVND WN =

// Fig. 15.9: figl5_09.cpp

// Using the unary scope resolution operator.
#include <iostream>

using namespace std;

int number = 7; // global variable named number

int main()

{

double number = : // local variable named number

// display values of local and global variables
cout << << number

<< << ::number << endl;
} // end main

Accessing the global variable

Shebuti Rayana (CS, Stony Brook University) (c) Pearson

21

Function Overloading

m Several functions with same name, different parameter list

I // Fig. 15.10: figl5_10.cpp

2 // Overloaded square functions.

3 #include <iostream>

4 using namespace std;

5

6 // function square for int values

7 int square(int x)

8 {

9 cout << << X << ;
10 return x * Xx;

Il } // end function square with int argument
12

I3 // function square for double values
14 double square(double y)

15 {

16 cout << <<y << -
17 return y * vy;

I8 1} // end function square with double argument
19

20 int main(Q

21 {

22 cout << square(7); // calls 1int version
23 cout << endl;

24 cout << square(7.5); // calls double version
25 cout << endl;

26 } // end main

square of integer 7 is 49
square of double 7.5 is 56.25 22:2

Function Overloading

m Several functions with same name, different parameter list

m Compiler selects the proper function by number, type and
order of parameters

m A common error: Creating overloaded function with
identical parameter lists and different return types [gives
compilation error].

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 23

Introduction to Object Technology

m Objects, or more precisely the classes objects come
from, are essentially reusable software components.

- There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc.

- Almost any noun can be reasonably represented as a software
object in terms of attributes (e.g., name, color and size) and
behaviors (e.g., calculating, moving and communicating).

m Using a modular, object-oriented design-and-
implementation approach can make software-
development groups much more productive than was
possible with earlier techniques

— object-oriented programs are often easier to understand, correct
and modify.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 24

Introduction to Object Technology:
Example

m [he Automobile as an Object

Let’s begin with a simple analogy.

Suppose you want to drive a car and make it go faster
by pressing its accelerator pedal.

Before you can drive a car, someone has to design it.

A car typically begins as engineering drawings, similar
to the blueprints that describe the design of a house.

Drawings include the design for an accelerator pedal.

Pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake
pedal hides the mechanisms that slow the car, and
the steering wheel hides the mechanisms that turn
the C%hre'buti Rayana

(CS, Stony Brook University) (c) Pearson 25

Introduction to Object Technology:
Example

- Enables people with little or no knowledge of how
engines, braking and steering mechanisms work
to drive a car easily.

- Before you can drive a car, it must be built from
the engineering drawings that describe it.

- A completed car has an actual accelerator pedal
to make the car go faster, but even that’s not
enough—the car won’t accelerate on its own
(hopefully!), so the driver must press the pedal to
accelerate the car.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 26

Introduction to Object Technology

Member Functions and Classes

" Performing a task in a program requires a
member function

= Houses the program statements that
actually perform its task.

" Hides these statements from its user, just
as the accelerator pedal of a car hides
from the driver the mechanisms of making

the car go faster.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 27

Introduction to Object Technology

m In C++, we create a program unit called a
class to house the set of member functions
that perform the class’s tasks.

m A class is similar in concept to a car’s
engineering drawings, which house the
design of an accelerator pedal, steering
wheel, and so on.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 28

Introduction to Object Technology

Instantiation

" Just as someone has to build a car from its
engineering drawings before you can
actually drive a car, you must build an
object from a class before a program can

perform the tasks that the class’s methods
define.

" An object is then referred to as an instance
of its class.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 29

Introduction to Object Technology
Reuse

= Just as a car’s engineering drawings can be
reused many times to build many cars, you

can reuse a class many times to build many
objects.

= Reuse of existing classes when building

new classes and programs saves time and
effort.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 30

Introduction to Object Technology

Messages and Member Function Calls

= When you drive a car, pressing its gas pedal
sends a message to the car to perform a
task—that is, to go faster.

= Similarly, you send messages to an object.

= Fach message is implemented as a
member function call that tells a member
function of the object to perform its task.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 31

Introduction to Object Technology

Attributes and Data Members
= A car has attributes

= Color, its number of doors, the amount of gas
In Its tank, its current speed and its record of
total miles driven (i.e., its odometer reading).

= The car’s attributes are represented as part of
its design in its engineering diagrams.

= Every car maintains its own attributes.

= Each car knows how much gas is in its own gas
tank, but not how much is in the tanks of other
cars.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 32

Introduction to Object Technology

m An object has attributes that it carries along as
it's used in a program.

m Specified as part of the object’s class.

m A bank account object has a balance attribute
that represents the amount of money in the
account.

m Each bank account object knows the balance
In the account it represents, but not the
balances of the other accounts in the bank.

m Attributes are specified by the class’s data
members.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 33

Introduction to Object Technology

Encapsulation

= Classes encapsulate (i.e., wrap) attributes and
member functions into objects—an object’s
attributes and member functions are
Intimately related.

= Objects may communicate with one another,
but they’'re normally not allowed to know how
other objects are implemented—
Implementation details are hidden within the
objects themselves.

= |Information hiding is crucial to good software
engineering.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 34

Introduction to Object Technology

Inheritance

= A new class of objects can be created
quickly and conveniently by inheritance—the
new class absorbs the characteristics of an
existing class, possibly customizing them

and adding unique characteristics of its
own.

" |n our car analogy, an object of class
“convertible” certainly is an object of the
more general class “automobile,” but more
specifically, the roof can be raised or
lowered.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 35

Introduction to Object Technology

Object-Oriented Analysis and Design (OOAD)

= How will you create the code (i.e., the program
instructions) for your programs®?

* Follow a detailed analysis process for
determining your project’s requirements (i.e.,
defining what the system is supposed to do)

= Develop a design that satisfies them (i.e.,
deciding how the system should do it).

= Carefully review the design (and have your
design reviewed by other software
professionals) before writing any code.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 36

Introduction to Object Technology

= |f this process involves analyzing and
designing your system from an object-
oriented point of view, it’s called an object-
oriented analysis and design (OOAD)
Process.

= |anguages like C++, Java are object
oriented.

" Object-oriented programming (OOP) allows
you to implement an object-oriented design
as a working system.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 37

