
CSE 230
Intermediate Programming

in C and C++
Input/Output and
Operating System

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
shebuti.rayana@stonybrook.edu

Outline
■ Use of some input/output functions in the standard library,

e.g. printf() and scanf() (although we have already used
them, many details still need to be explained)

■ Effect of various formats

■ Input/output functions dealing with files and strings

■ How to open file for processing and how to use a pointer to
a file

■ Operating system utilities

■ Some more important tools, including compiler, make,
touch, grep, beautifiers, and debuggers

Shebuti Rayana (CS, Stony Brook University) 2

Output Function printf()
■ Two nice properties
– A list of arguments of arbitrary length can be

printed
– Printing is controlled by simple conversion

specifications or formats
■ printf() delivers its character stream to the

standard output file stdout, which is normally
connected to the screen

■ The argument list of printf() has two parts
– control_string and other_arguments

Shebuti Rayana (CS, Stony Brook University) 3

Example printf()
■ printf(“she sells %d %s for %f”, 99, “sea shells”, 3.77);
– control_String: “she sells %d %s for %f”
– Other_arguments: 99, “sea shells”, 3.77

■ The expression in the other_arguments are evaluated and
converted according to the formats in the control_string
and then placed in the output stream.

■ Characters in the control_string are not part of the format
and placed directly in the output stream.

■ The % symbol introduces a conversion specification

■ A single-conversion specification is a string that begins
with a % and ends with a conversion character.

Shebuti Rayana (CS, Stony Brook University) 4

printf() conversion characters

Shebuti Rayana (CS, Stony Brook University) 5

Conversion how the corresponding argument is printed
characters

c character
d, i decimal integer
u unsigned decimal integer
o unsigned octal integer
x, X unsigned hexadecimal integer
e floating-point number, 7.123000e+00
E floating-point number, 7.123000E+00
f floating-point number, 7.123000
g, G floating-point number in e/E or f format which ever is shorter
s string
p pointer to void, printed as hexadecimal
n pointer to integer into which the number of characters written so

far is printed, argument not converted
% with %% a single % is written to the output stream

More about printf()
■ printf() returns as an integer the number of characters

printed, in the following example
– printf(“she sells %d %s for %f”, 99, “sea shells”, 3.77);

– Explicit formatting information can be included
– For %f 3.77 will be printed as 3.770000, with 6 digits

after decimal point by default

Shebuti Rayana (CS, Stony Brook University) 6

format argument

%d 99
%s “sea shells”
%f 3.77

More about printf()
■ Between % and conversion character there may be other

conversion specifiers
– Zero or more flag characters
– An optional positive integer that specifies the minimum

field width of the converted argument
– An optional precision, which is specified by a period

followed by a nonnegative integer.
■ For integer d, i, o, u, x, X values minimum digits to be printed
■ For float e, E, f number of digits after decimal point to be printed
■ For g, G it specifies maximum number of significant digits
■ For s, it specifies maximum number of characters to be printed

Shebuti Rayana (CS, Stony Brook University) 7

More about printf()

Shebuti Rayana (CS, Stony Brook University) 8

More about printf()

Shebuti Rayana (CS, Stony Brook University) 9

Input function scanf()
■ Two nice properties
– A list of arguments of arbitrary length can be

scanned
– Input is controlled by simple conversion

specifications or formats
■ scanf() reads characters from the standard input

file stdin
■ The argument list of scanf() has two parts
– control_string and other_arguments

Shebuti Rayana (CS, Stony Brook University) 10

Example of scanf()
char a, b, c, s[100];

int n;

double x;

scanf(“%c%c%c%d%s%lf”, &a, &b, &c, &n, s, &x);

■ control_String: “%c%c%c%d%s%lf”

■ other_arguments: &a, &b, &c, &n, s, &x

■ The other_argument following the control string consist of
comma-separated list of pointer expressions or addresses

– Note in the above, writing &s would be wrong as s itself is an
address

Shebuti Rayana (CS, Stony Brook University) 11

Conversion characters

Shebuti Rayana (CS, Stony Brook University) 12

Conversion characters

Shebuti Rayana (CS, Stony Brook University) 13

More about scanf()
■ Control string may contain
– white space, which matches optional white space in the

input stream
– Ordinary non-white space characters, other than %. Each

must match to the next character in the input stream
– Conversion specifications that begin with a % and end

with a character. Between % and character, there may be
optional * that indicates assignment suppression,
followed by an integer that defines the maximum scan
width, followed by optional h, l or L that modifies the
specification.

■ Modifer h is used for integers which means the value stored in a
short int or unsigend short int

Shebuti Rayana (CS, Stony Brook University) 14

More about scanf()
■ Modifier l, which can precede integer or float conversion

formats. For integers, it indicates long int or unsigned long int.
For floats, it indicates double.

■ Modifier L, precede float, indicates long double

■ The characters in the input stream are converted to values
according to the conversion specifications in the control
string and placed at the address given by the
corresponding pointer expression in the argument list.

■ Except for character input, a scan field consists of
contiguous nonwhite characters that are appropriate to
the specified conversion. The scan field ends when a
nonappropriate character is reached, or the scan width, if
specified, is exhausted, whichever comes first.

Shebuti Rayana (CS, Stony Brook University) 15

More about scanf()
■ When a string is read in, it is presumed that enough space has been

allocated in memory to hold the string and an end-of-string sentinel
\0, which will be appended. The format %1s can be used to read in
the next nonwhite character. It should be stored in a character array of
size at least 2.

■ The format %nc can be used to read in the next n characters, including
white space characters. When one or more characters are read in,
white space is not skipped. In this case a null character is not
appended.

■ A format such as %1f can be used to read in a double. Floating
numbers in the input stream are formatted as an optional sign
followed by a digit string with an optional decimal point, followed by an
optional exponent part. The exponential part consists of e or E,
followed by an optional sign followed by a digit string.

Shebuti Rayana (CS, Stony Brook University) 16

More about scanf()
■ A conversion specification of the form % [string] indicates that a

special string is to be read in.

■ If the first character in string is not a circumflex character ^ , then the
string is to be made up only of the characters in string.

■ If the first character in string is a circumflex, then the string is to be
made up of all characters other than those in string.

■ Example:
– the format %[abc] will input a string containing only the letters a, b, c,

and will stop if any other character appears in the input stream,
including a blank

– The format %[^abc] will input a string terminated by any of a, b, or c,
but not by space.

– scanf(“%[^\n]s”, sentence); // read input till you get a newline

Shebuti Rayana (CS, Stony Brook University) 17

More about scanf()
scanf(“%[A B \n\t]”, s);

■ Read into a character array s a string containing A’s, B’s, spaces, tabs ,
newlines

■ The specification %s skips white space and then reads in non-white
space characters until a white space character is encountered or the
end-of-file mark is encountered, whichever comes first.

■ In contrast , the specification %5s skips white space and then reads in
nonwhite characters, stopping when a white space character is
encountered or an end-of-file mark is encountered or five characters
been read in, whichever comes first.

Shebuti Rayana (CS, Stony Brook University) 18

More about scanf()
■ The function scanf() returns the number of successful conversions

performed.

■ The value EOF is returned when the end-of-file mark is reached.
– Typically, this value is -1.
– The value 0 is returned when no successful conversions are

performed, and this is always different from EOF.

■ An inappropriate character in the input stream can frustrate expected
conversions, causing the value 0 to be returned. As long as the stream
can be matched to the control string, the input stream is scanned and
values converted and assigned.

■ The process stops if the input is inappropriate for the conversion
specification.

■ The value returned by scanf() can be used to test that occurred as
expected, or to test that the end of the file was reached.

Shebuti Rayana (CS, Stony Brook University) 19

More about scanf()
■ Example:

int i;

char c;

char string[15];

sccanf(“%d , %*s %% %c %5s %s”, &i, &c,
string, &string[5]);

■ With the following characters in the input stream

45 , ignore_this % C read_in_this**

Shebuti Rayana (CS, Stony Brook University) 20

More about scanf()
■ The value 45 is placed in i

■ the comma is matched

■ the string "ignore_this" is ignored

■ the % is matched

■ the character C is placed in the variable c

■ the string" read_” is placed in string [0] through string [5] with the
terminating \0 in string [5]

■ Finally, the string “in_ this **" is placed in string [5] through stri ng
[14], with string [14] containing \0.

■ Because four conversions were successfully made, the value 4 is
returned by scanf().

Shebuti Rayana (CS, Stony Brook University) 21

Functions fprintf(), fscanf()
■ The functions fprintf() and fscanf() are file

versions of printf() and scanf()
■ They are used to take input from file
■ Before knowing their use, we need to know how C

deals with files.

Shebuti Rayana (CS, Stony Brook University) 22

FILE in C
■ The identifier FILE is defined in stdio.h as a particular

structure, with members that describe the current state of
a file.

– To use files, a programmer need not know any details concerning this
structure.

– Also defined in stdio.h are the three file pointers stdin, stdout, and
stderr. Even though they are pointers, we sometimes refer to them as
files.

Shebuti Rayana (CS, Stony Brook University) 23

Written in C Name Remark

stdin Standard input file Connected to keyboard
stdout Standard output file Connected to screen
stderr Standard error file Connected to screen

Functions fprintf(), fscanf()
■ The function prototypes for file handling functions are given in stdio.h.
■ prototypes for fprintf() and fscanf():
int fprintf(FILE *fp, canst char *format, ...);

int fscanf(FILE *fp, canst char *format, ...);

■ A statement of the form
fprintf(file_ptr, control_string, other_arguments);

■ writes to the file pointed to by file_ptr. The conventions for
control_string and other_arguments conform to those of printf()

fprintf(stdout, ...); is equivalent to printf(...);

■ A statement of the form
fscanf (file_ptr, control_string , other_arguments);

■ reads from the file pointed to by file_ptr.
fscanf(stdi n, ...); is equivalent to scanf(...);

Shebuti Rayana (CS, Stony Brook University) 24

Functions sprintf(), sscanf()
■ The functions sprintf() and sscanf() are string versions of the printf()

and scanf(), respectively.
– Their function prototypes, found in stdio.h,

int sprintf(char *s, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

■ The function sprintf() writes to its first argument, a pointer to char
(string), instead of to the screen.

– Its remaining arguments conform to those for printf().

■ The function sscanf() reads from its first argument instead of from
the keyboard.

– Its remaining arguments conform to those for scanf()

Shebuti Rayana (CS, Stony Brook University) 25

Example: sprintf(), sscanf()
char str1[] = "1 2 3 go", str2[100] , tmp[100];

int a, b, c;

sscanf(str1, "%d%d%d%s", &a, &b, &c, tmp);

sprintf(str2, "%s %s %d %d %d\n", tmp, tmp, a, b, c);

printf("%s", str2);

■ The function sscanf() takes its input from str1. It reads three decimal
integers and a string, putting them into a, b, c, and tmp, respectively.

■ The function sprintf() writes to str2. More precisely, it writes characters in
memory, beginning at the address str2. Its output is two strings and
three decimal integers.

■ To see what is in str2, we printf(). It prints the following on the screen:

go go 1 2 3

Shebuti Rayana (CS, Stony Brook University) 26

Functions sprintf(), sscanf()
■ It is the programmer's responsibility to provide adequate

space in memory for the output of sprintf().

■ Reading from a string is unlike reading from a file in the
following sense: If we sscanf() to read from str1 again, then
the input starts at the beginning of the string, not where we
left off before.

Shebuti Rayana (CS, Stony Brook University) 27

Functions fopen(), fclose()
■ A file can be thought of as a stream of characters.

■ After a file has been open, the stream can be accessed with file
handling functions in the standard library.

■ File has several important properties:
– Name
– Must be opened and closed
– Written to or read from or appended to
– When it is open, we have access to it at its beginning or end
– Until a file is opened nothing can be done with it
– We have to tell the system which activity we want to perform on a file

when we open it
– When we finish using the file we close it

Shebuti Rayana (CS, Stony Brook University) 28

Example
#include <stdio.h>

int main(void){

int a, sum = 13;

FILE *ifp, *ofp;

ifp = fopen("my_file", ”r"); /*open for reading*/

ofp = fopen("outfile", "w");/* open for wri ng */

……

■ This opens two files in the current directory: my_file for reading and outfile
for writing. (The identifier ifp is mnemonic for "infile pointer," and the
identifier ofp is nmemonic for "outfile pointer.”)

■ After a file has been opened, the file pointer is used exclusively in all
references to the file.

Shebuti Rayana (CS, Stony Brook University) 29

Example
■ Suppose that my_file contains integers. If we want to sum

them and put the result in outfile, we can write

while (fscanf(ifp, “%d”, &a) == 1)

sum += a;

fprintf(ofp, "The sum is %d.\n", sum);

■ Note that fscanf(), like scanf(), returns the number of
successful conversions.

■ After we have finished using a file, we can write

fclose(ifp);

■ This closes the file pointed to by ifp.

Shebuti Rayana (CS, Stony Brook University) 30

fopen()
■ A function call of the form fopen (filename, mode) opens the

named file in a particular mode and returns a file pointer.

■ Each of these modes can end with a + character. This means
that the file is to be opened for both reading and writing

Shebuti Rayana (CS, Stony Brook University) 31

mode Meaning

“r” Open text file for reading
“w” Open text file for writing
“a” Open text file for appending
“rb” Open binary file for reading
“wb” Open binary file for writing
“ab” Open binary file for appending

fopen()
■ Opening for reading a file that cannot be read, or does not exist, will

fail. In this case fopen() returns a NULL pointer.

■ Opening a file for writing causes the file to be created if it does not
exist and causes it to be overwritten if it does.

■ Opening a file in append mode causes the file to be created if it does
not exist and causes writing to occur at the end of the file if it does.

■ A file is opened for updating (both reading and writing) by using a + in
the mode.

– between a read and a write or a write and a read there must be an
intervening call to fflush() to flush the buffer, or a call to one of the file
positioning function calls fseek(), fsetpos(), or rewind().

Shebuti Rayana (CS, Stony Brook University) 32

fopen()
■ In some operating systems, including UNIX, there is no distinction

between binary and text files, except in their contents.
– The file mechanism is the same for both types of files.

■ In MS-DOS and other operating systems, there are different file
mechanisms for each of the two types of files.

Shebuti Rayana (CS, Stony Brook University) 33

Example

Shebuti Rayana (CS, Stony Brook University) 34

Example

Shebuti Rayana (CS, Stony Brook University) 35

■ Suppose we have compiled this program and put the
executable code in the file dbl_space. When we give the
command

dbl_space file1 file2

■ the program will read from file1 and write to file2. The
contents of file2 will be the same as file1, except that every
newline character will have been duplicated.

Using temporary files
■ Library function tmpfile() to create a temporary binary

file that will be removed when it is closed or on program
exit.

■ The file is opened for updating with “wb+”
– In MS-DOS binary files can be used as text files
– In UNIX binary and text files are the same

■ Example: We read the contents of a file into a temporary
file, capitalizing any letters as it does so. Then the program
adds the contents of the temporary file to the bottom of
the first file.

Shebuti Rayana (CS, Stony Brook University) 36

Example: dbl_with_caps.c

37

Example: Graceful Function

Shebuti Rayana (CS, Stony Brook University) 38

• If the file apple contains the following line

A is for apple and alphabet pie.

• After we give the command: dbl_with_caps apple
• the contents of the file will be

A is for apple and alphabet pie.

A IS FOR APPLE AND ALPHABET PIE.

Accessing a File Randomly
■ The library functions fseek() and ftell() are used to access a

file randomly.

ftell(file_ptr);

■ Returns the current value of the file position indicator.

■ The value represents the number of bytes from the beginning of the
file, counting from zeros.

■ Whenever a character is read from the file, the system increments the
position indicator by 1.

■ The file position indicator is a member of the structure pointed to by
file_ptr.

■ Caution: The file pointer itself does not point to individual characters
in the stream. This is a conceptual mistake that many beginning
programmers make.

Shebuti Rayana (CS, Stony Brook University) 39

Accessing a File Randomly
fseek(file_ptr, offset, place);

■ It takes three parameters:
– a file pointer,
– an integer offset, and
– an integer that indicates the place in the file from which the offset

should be computed.

■ fseek() sets the file position indicator to a value that represents offset
bytes from place.

■ The value for place can be 0, 1, or 2, meaning the beginning of the
file, the current position, or the end of the file, respectively.

■ Caution: The functions fseek() and ftell() are guaranteed to work
properly only on binary files. In MS-DOS, if we want to use these
functions, the file should be opened with a binary mode. In UNIX, any
file mode will work.

Shebuti Rayana (CS, Stony Brook University) 40

Example: Writing a file backwards

Shebuti Rayana (CS, Stony Brook University) 41

File Descriptor Input/Output
■ A file descriptor is a nonnegative integer

associated with a file.

■ Functions in the standard library that use a pointer to FILE are usually
buffered.

■ Functions that use file descriptors may require programmer-specified
buffers

Shebuti Rayana (CS, Stony Brook University) 42

File Name Associated file descriptor
Standard input 0
Standard output 1
Standard error 2

Example: change_case.c

Shebuti Rayana (CS, Stony Brook University) 43

File Access Permissions
■ In UNIX, a file is created with associated access permissions

■ The permissions determine access to the file for the owner, the group,
and for others.

■ The access can be read, write, execute, or any combination of these,
including none.

■ When a file is created by invoking open(), a three-digit octal integer
can be used as the third argument to set the permissions.

■ Each octal digit controls read, write, and execute permissions.
– The first octal digit controls permissions for the user,
– the second octal digit controls permissions for the group, and
– the third octal digit controls permissions for others.

Shebuti Rayana (CS, Stony Brook University) 44

File Access Permissions
Meaning of each octal digit in the file permissions

Mnemonic Bit representation Octal representation
r-- 100 04
-w- 010 02
--x 001 01
rw- 110 06
r-x 101 05
-wx 011 03
rwx 111 07

Shebuti Rayana (CS, Stony Brook University) 45

Now, if we pack three octal digits together into one number, we get the file
access permissions.
The first, second, and third group of three letters refers to the user, the
group, and others, respectively.

Example of File Access Permissions
Mnemonic Octal representation

rw------- 0600
rw----r-- 0604
rwxr-xr-x 0755
rwxrwxrwx 0777

Shebuti Rayana (CS, Stony Brook University) 46

The permissions rwxr-xr-x mean that
• the owner can read, write, and execute the file
• the group can read and execute the file
• that others can read and execute the file.
• In UNIX, the mnemonic file access permissions are displayed with the Is

-l command.
• In MS-DOS, file permissions exist, but only for everybody.

Executing commands from
within a C program
■ The library function system() provides access to operating

system commands.
– In both MS-DOS and UNIX, the command date causes the current date

to be printed on the screen. If we want this information printed on the
screen from within a program, we can write

system(“date”);

■ The string passed to system() is treated as an operating system
command.

■ When the statement is executed, control is passed to the operating
system, the command is executed, and then control is passed back to
the program.

Shebuti Rayana (CS, Stony Brook University) 47

Executing commands from
within a C program
■ In UNIX, vim is a commonly used text editor. Suppose that

from inside a program we want to use vim to edit a file that
has been given as a command line argument. We can write

char command[MAXSTRING];

sprintf(command, "vi %s", argv[1])'

printf("vi on the file %s is coming up ... \n", argv[1]);

system(command);

Shebuti Rayana (CS, Stony Brook University) 48

Using Pipes from within a C
program
■ UNIX system has popen() amd pclose() to communicate with the operating

system.
– Not available in MS-DOS

#include <ctype.h>

#include <stdio.h>

int main(void){

int c;

FILE *ifp;

ifp = popen(”ls", "r");

while ((c = getc(ifp)) != EOF)

putchar(toupper(c));

pclose(ifp);

return 0;

}
Shebuti Rayana (CS, Stony Brook University) 49

Using Pipes from within a C
program
■ The first argument to popen() is a string that is interpreted as a

command to the operating system; the second argument is a file
mode, either “r” or "w".

■ When the function is invoked, it creates a pipe between the calling
environment and the system command that is executed. Here, we get
access to whatever is produced by the Is command. Because access
to the stream pointed to by ifp is via a pipe, we cannot use file
positioning functions.

■ For example, rewind (ifp) will not work.

■ We can only access the characters sequentially. A stream opened by
popen() should be closed by pclose().

– If the stream is not closed explicitly, then it will be closed by the
system

Shebuti Rayana (CS, Stony Brook University) 50

Environment Variables
■ Environment variables are available in both UNIX and MS-DOS

■ An environment variable is a dynamic-named value that can affect the way
running processes will behave on a computer. They are part of the
environment in which a process runs.

– For example, a running process can query the value of the TEMP
environment variable to discover a suitable location to store temporary
files, or the HOME or USERPROFILE variable to find the directory
structure owned by the user running the process.

■ The following program prints the environment variables
#include <stdio.h>

int main(int argc, char *argv[], char *env[]){

int i;

for (i = 0; env[i] != NULL; ++i)

printf("%s\n" , env[i]);

return 0;

} Shebuti Rayana (CS, Stony Brook University) 51

Environment Variables
■ The third argument to main() is an array of strings.

■ The system provides the strings, including the space for them.

■ The last element in the array env is a NULL pointer.

■ In UNIX system, this program prints something like

HOME=/c/c/blufox/center_manifold

SHELL=/bin/csh

TERM=vt102

USER=blufox

………

■ To the left of the equal sign is the environment variable; to the right of
the equal sign is its value, which should be thought of as a string.

■ You can also use getenv() to get the environment variables
Shebuti Rayana (CS, Stony Brook University 52

How to time a C code
■ Access to the machines internal clock is possible through some library

functions in time.h

■ This header file also contains a number of other constructs, including
the type definitions for clock_t and time_ t, which are useful dealing
with time.

typedef long clock_t

typedef long time_t

■ Function prototypes:

clock_t clock(void)

time_t time(time_t *p)

double difftime(time_t time1, time_t time0)

Shebuti Rayana (CS, Stony Brook University) 53

How to time a C code
■ When a program is executed, the operating system keeps track of the

processor time that is being used. When clock() is invoked, the value
returned is the system's best approximation to the time used by the
program up to that point in seconds.

■ The function time() returns the number of seconds that have elapsed
since 1 January 1970 (UNIX timestamp - Epoch).

■ If two values produced by time() are passed to difftime(), the
difference expressed in seconds is returned as a double.

Shebuti Rayana (CS, Stony Brook University) 54

How to
time a C
code

Shebuti Rayana (CS, Stony Brook University) 55

H
ow

 to
 ti

m
e

a
C

co
de

/* Compare float and double multiplication times. */

#include <stdio.h>

#include "u_lib.h"

#define N 100000000 /* one hundred million */

int main (void){

long i;

float a, b = 3.333, c = 5.555;

double x, Y = 3.333, z = 5.555;

printf("Number of multiplies: %d\n\n", N);

printf("Type float:\n\n");

start_time();

for (i = 0; i < N; ++i)

a = b * c;

prn_time();

printf("Type double:\n\n");

for (i = 0; i < N; ++i)

x = y * z;

prn_time();

return 0;

}

Shebuti Rayana (CS, Stony Brook University) 56

