
CSE 230
Intermediate Programming

in C and C++
Structures

and List Processing
Fall 2017

Stony Brook University
Instructor: Shebuti Rayana

http://www3.cs.stonybrook.edu/~cse230/

Self-referential Structure
■ Self-referential structures have pointer

members that refer to the structure itself.
Such data structures are called dynamic
data structures.
■ Unlike arrays or simple variables that are

normally allocated at block entry, dynamic
data structures often require storage
management routines to explicitly obtain
and release memory.

Shebuti Rayana (CS, Stony Brook University) 2

Example: Self-referential Structure
struct list{

int data;
struct list *next;

}a;

■ This declaration can be stored in two words of
memory.

– The first word stores the member data, and
– the second word stores the member next.
■ The pointer variable next is called a link. Each

structure is linked to a succeeding structure by
way of the member next. These structures are
conveniently displayed pictorially with links
shown as arrows.

Shebuti Rayana (CS, Stony Brook University) 3

Example (cont.)

■ The pointer variable next contains either an address of
the location in memory the successor list element, or the
special value NULL defined as O.

– NULL is used denote the end of the list.
■ Declaration: struct list a, b, c;

■ Initialization:
a.data = 1; b.data = 2; c.data = 3;

a.next = b.next = c.next = NULL

Shebuti Rayana (CS, Stony Brook University) 4

data next

A structure of type struct list

Example (cont.)

■ Chaining: a.next = &b; b.next = &c;

Shebuti Rayana (CS, Stony Brook University) 5

1 NULL

a

2 NULL

b

3 NULL

c

After Assignment

1

a
2

b
3 NULL

c

After Chaining

■ Accessing elements:
a.next -> data
a.next -> next -> data

Motivation of using Linked List
■ Consider an array: 1, 4, 10, 19, 25

■ If we want to insert 7 between 4 and 10, what to do?

■ Disadvantages of using arrays to store data:
– arrays are static structures and cannot be easily extended

or reduced to fit the data set
– Expensive to maintain: insertions and deletions are costly

Shebuti Rayana (CS, Stony Brook University) 6

Linked List
■ A linear data structure where each element is a separate

structure type. Sequence of elements called Nodes

■ Every node (except the last) contains pointer to the next.

■ Components of a node:
– Data: stores the relevant information
– Link: stores the address/pointer to the next node

Shebuti Rayana (CS, Stony Brook University) 7

1 Null2 3
head

data next

node

1

data reference

node

Linked Lists: Anatomy

■ Head: a special pointer, points to the first node. Head is
not a separate node, but a pointer to the first node. If the
list is empty then the head is a null pointer.

■ The last node points to none, as such Null

Shebuti Rayana (CS, Stony Brook University) 8

1 Null2 3
head

data next

node

Linked List: Example

Shebuti Rayana (CS, Stony Brook University) 9

1 Null2 3

head

Conceptual Picture

Word Address Content

1000 2
1002 1008
1004 1
1006 1000
1008 3
1010 0
1012 1004

Actual Picture

head

1st content

2nd content

3rd content

Linked List: More Terminologies
■ Some lists may have a special link called the tail that

points the last node in a list.

■ A cursor is a link that points to one of the nodes of the
list.

■ A node’s successor is the next node in the sequence
– The last node has no successor

■ A node’s predecessor is the previous node in the
sequence

– The first node has no predecessor

■ A list’s length is the number of elements in it
– A list may be empty (i.e. head = tail = Null)

Shebuti Rayana (CS, Stony Brook University) 10

Linked List
■ A linked list is a dynamic data structure.
– The number of nodes in a list is not fixed and can grow

and shrink on demand (unlike arrays).

■ One disadvantage of a linked list against an array
– Does not allow direct access to the individual elements.
– In order to retrieve an element, we have to follow the

pointers and traverse one by one [O(n)]

Shebuti Rayana (CS, Stony Brook University) 11

Why linked list? not array?
■ Linked lists are more complex to code and manage than

arrays, but they have some distinct advantages.
– Efficient memory usage
■ An array needs a continuous memory block, but a node of a list can be

anywhere, it just points to the next element

– Dynamic: a linked list can easily grow and shrink in size.
■ We don’t need to know how many nodes will be in the list. They are

created in memory as needed. In contrast, the size of an array is fixed

– Easy and fast insertions and deletions
■ To insert or delete an element in an array, we need to copy to

temporary variables to make room for new elements or close the gap
caused by deleted elements.

■ With a linked list, no need to move other nodes. Only need to reset
some pointers.

Shebuti Rayana (CS, Stony Brook University) 12

Types of Linked Lists
■ A Singly or Linear Linked List

■ A Doubly Linked List:

– a list that has two pointers: one to the next node and
another to previous node

■ Circular linked list where last node of the list points back
to the first node (or the head) of the list.

Shebuti Rayana (CS, Stony Brook University) 13

A NullB C
head node

data next

A B C
null

Linear Linked List Implementation

Shebuti Rayana (CS, Stony Brook University) 14

Storage Allocation
LINK head;

head = malloc(sizeof(ELEMENT));

head -> ‘n’;

head -> next = NULL;

Shebuti Rayana (CS, Stony Brook University) 15

obtains a piece of memory from the
system adequate to store an
ELEMENT and assigns its address to
the pointer head.

Creating a linked list

NULLn
head

Adding more elements
■ A second element is added by the assignments
head -> next = mal1oc(sizeof(ELEMENT));

head -> next -> d = 'e';

head -> next -> next = NULL;

Shebuti Rayana (CS, Stony Brook University) 16

A two element linked list

n
head

NULLe

Adding more elements
■ A third element is added by the assignments
head -> next -> next =
mal1oc(sizeof(ELEMENT));

head -> next -> next -> d = ’w';

head -> next -> next -> next = NULL;

Shebuti Rayana (CS, Stony Brook University) 17

A two element linked list

n
head

e NULLw

Linear List Operations
■ Some of the basic operations are:
– Creating a list
– Counting the elements
– Looking up an element
– Concatenating two lists
– Inserting an element
– Deleting an element
■ This operations can be implemented with both recursion

and iteration.

■ The data d in could be redefined as an arbitrarily
complicated data structure.

Shebuti Rayana (CS, Stony Brook University) 18

Creating a List from a String
using Recursion

Shebuti Rayana (CS, Stony Brook University) 19

Creating a List from a String:
Iterative solution

Shebuti Rayana (CS, Stony Brook University) 20

Counting Elements in a List

Shebuti Rayana (CS, Stony Brook University) 21

Keep in mind that head is passed “call-by-value”, so that invoking count_it() does not
destroy access to the list in the calling environment

Printing List

Shebuti Rayana (CS, Stony Brook University) 22

Concatenating two Lists

Shebuti Rayana (CS, Stony Brook University) 23

Insertion

Shebuti Rayana (CS, Stony Brook University) 24

Deletion

Shebuti Rayana (CS, Stony Brook University) 25

p -> next = p -> next -> next;

Deletion of a whole List

Shebuti Rayana (CS, Stony Brook University) 26

Stack
■ Stack implementation with
– Fixed size arrays ✔
– Linked lists

Shebuti Rayana (CS, Stony Brook University) 27

data

data
top

cnt

A stack implementation

NULL

data

stack

elem

Stack: Implementation (stack.h)

Shebuti Rayana (CS, Stony Brook University) 28

Shebuti Rayana (CS, Stony Brook University) 29

Basic stack routines

Stack: Implementation (test code)

Shebuti Rayana (CS, Stony Brook University) 30

Stack: Application 1
■ Balanced Parenthesis: An arithmetic expression

has balanced parenthesis if and only if:
■ the number of left parentheses of each type is equal

to the number of right parentheses of each type
■ each right parenthesis of a given type matches to a

left parenthesis of the same type to its left and all
parentheses in between are balanced correctly.

■ Example:
– ({A + B} –C) Balanced
– ({A + B) –C} Not balanced
– ({A + B} –[C / D]) Balanced
– (({A + B} –C) / D)) Not balanced

Shebuti Rayana (CS, Stony Brook University) 31

Algorithm:
check for balanced parenthesis
Scan the expression from left to right.

For each left parenthesis that is found, push on the stack

For each right parenthesis that is found,

If the stack is empty, return false(too many right
parentheses)

Otherwise, pop the top parenthesis from the stack:

If the left and right parentheses are of the
same type, discard. Otherwise, return false.

If the stack is empty when the scan is complete, return true.
Otherwise, return false. (too many left parentheses)

Shebuti Rayana (CS, Stony Brook University) 32

Trace

Shebuti Rayana (CS, Stony Brook University) 33

Stack: Application 2
■ Evaluating Expressions: An expression is fully

parenthesized if every operator has a pair of
balanced parentheses marking its left and right
operands.

■ Not fully-parenthesized:
3 * (5 + 7) –9 (2 -4) * (5 -7) + 8

■ Fully-parenthesized:
((3 * (5 + 7))–9)(((2 -4)*(5 -7))+ 8)

Shebuti Rayana (CS, Stony Brook University) 34

General Idea
■ The first operation to perform is surrounded by

the innermost set of balanced parentheses.
– Example:((3 * (5 + 7)) –9) First op: +
■ By reading expression from left to right, first

operator comes immediately before first right
parenthesis.

■ Replace that subexpression with its result and
search for next right parenthesis, etc.

– Example:((3 * 12) –9) = (36 –9) = 27

Shebuti Rayana (CS, Stony Brook University) 35

General Idea (cont.)
■ How do we keep track of operands and operators

as we read past them in the expression from left
to right?

– Use two stacks: one for operands and one for
operators.

■ When we encounter a right parenthesis, pop off
one operator and two operands, perform the
operation, and push the result back on the
operand stack.

Shebuti Rayana (CS, Stony Brook University) 36

Trace

Shebuti Rayana (CS, Stony Brook University) 37

Algorithm
■ Let each operand or operator or parenthesis symbol be a token.
■ Let NumStack store the operands.
■ Let OpStack store the operations.
For each token in the input expression do

If token = operand, NumStack.push(token)
If token = operator, OpStack.push(token)
If token = “)”,

operand2ßNumStack.pop()
operand1ßNumStack.pop()
operator ßOpStack.pop()
result ßoperand1 operator operand2
NumStack.push(result)

If token = “(”, ignore token
After expression is parsed, answer ß NumStack.pop() 38

Stack: Application 3
■ Arithmetic Expression:
Infix notation: operator is between its two
operands
3 + 5 (5 + 7) * 9 5 + (7 * 9)
Prefix notation: operator precedes its two
operands
+ 3 5 * + 5 7 9 + 5 * 7 9
Postfix notation: operator follows its two
operands
3 5 + 5 7 + 9 * 5 7 9 * +

Shebuti Rayana (CS, Stony Brook University) 39

Precedence of Operators
■ Multiplication and division (higher precedence)

are performed before addition and subtraction
(lower precedence)

■ Operators in balanced parentheses are
performed before operators outside of the
balanced parentheses.

■ If two operators are of the same precedence,
they are evaluated left to right.

Shebuti Rayana (CS, Stony Brook University) 40

Example
■ Infix expression:
A + B * (C * D –E / F) / G –H

6 4 1 3 2 5 7

■ What is prefix equivalent?
–+ A / * B –* C D / E F G H
7 6 5 4 3 1 2

■ What is postfix equivalent?
A B C D * E F / –* G / + H –

1 2 3 4 5 6 7
Shebuti Rayana (CS, Stony Brook University) 41

Evaluating a Postfix Expression
■ Let each operand or operator be a token.
■ Let NumStack store the operands.
For each token in the input expression do

If token = operand, NumStack.push(token)
If token = operator,

operand2ßpop()
operand1ßpop()
result ßoperand1 operator operand2
NumStack.push(result)

answer ßpop()
Shebuti Rayana (CS, Stony Brook University) 42

Trace

Shebuti Rayana (CS, Stony Brook University) 43

Translating Infix to Postfixt
■ Let each operand, operator, or parenthesis be a

token.
■ Let OpStack store the operators.
■ Let postfix string P = “” (empty string)
For each token in the input expression do

If token = operand, append operand to P
If token = operator, push(token)
If token = “)”, append pop() to P
If token = “(“, ignore

Shebuti Rayana (CS, Stony Brook University) 44

Trace

Shebuti Rayana (CS, Stony Brook University) 45

Queue
■ Another ADT queue is a container of elements (a linear

collection) that are inserted and removed according to
the first-in first-out (FIFO) principle.

– Example: a line of students in the SAC food court. New additions to a
line made to the back of the queue, while removal (or serving)
happens in the front.

■ In the queue only two operations are allowed enqueue
and dequeue

– enqueue means to insert an item
into the back of the queue

– dequeue means removing the front item

Shebuti Rayana (CS, Stony Brook University) 46

The difference between stacks and queues is in
removing. In a stack we remove the item the most
recently added; in a queue, we remove the item the
least recently added.

Pictorial Representation of Queue

Shebuti Rayana (CS, Stony Brook University) 47

data Null

front

data data

elem

Queue

rear

cnt

Queue:
Implementation
(queue.h)

Shebuti Rayana (CS, Stony Brook University) 48

Shebuti Rayana (CS, Stony Brook University) 49

Basic queue routines

Josephus Problem
■ Suppose there are n children standing in a queue.

■ Children are numbered from 1 to n in the clockwise
direction.

■ Choose a lucky number say m.

■ They start counting in clockwise direction from the child
designated as 1. The counting proceeds until the mth
child is identified. mth child is eliminated from the queue.

■ Counting for the next round begins from the child next to
the eliminated one and proceeds until the mth child is
identified. This child is then eliminated and the process
continues.

■ After few rounds of counting only one child is left and this
child is declared as winner.

Shebuti Rayana (CS, Stony Brook University) 50

Josephus Problem

Shebuti Rayana (CS, Stony Brook University) 51

Can you solve this problem using a queue?

