
CSE 230
Intermediate Programming

in C and C++
Unions

and Bit Fields
Fall 2017

Stony Brook University
Instructor: Shebuti Rayana

http://www3.cs.stonybrook.edu/~cse230/

Union
■ Like structures, unions are derived types.
■ They follow the same syntax as structures.
■ But union members share storage.
■ It defines a set of alternative values that

may be stored in a shared portion of
memory.
■ The programmer is responsible for

interpreting the stored values correctly.

Shebuti Rayana (CS, Stony Brook University) 2

Union: Declaration
union int_or_float{

int i;

float f;

};

■ union is a keyword, int_or_float is the union tag
name, and the variables i and f are members

■ Creates the derived data type union int_or_float.
The declaration can be thought of as a template; it creates
the type, but no storage is allocated.

■ The tag name, along with the keyword union, can now be
used to declare variables of this type.

union int_or_float a,b,c;

Shebuti Rayana (CS, Stony Brook University) 3

Union: Declaration
■ After declaration compiler allocates storage

for the identifiers.
■ For each variable the compiler allocates a

piece of storage that can accommodate the
largest of the specified members.
■ The notation to access a member is

identical to structure.

Shebuti Rayana (CS, Stony Brook University) 4

Example
typedef union int_or_float {

int i;

float f;

} number;

int main (void){

number n;

n.i = 4444;

printf(“i: %10d f: %16.10e\n”,n.i, n.f);

n.f = 4444.0;

printf(“i: %10d f: %16.10e\n”,n.i, n.f);

return 0;

}

Output: i: 4444 f: 6.227370375e-41

i: 1166729216 f: 4.4440000000e+03

Shebuti Rayana (CS, Stony Brook University) 5

causes the system to allocate 4 byte for n.

Why?

Example
■ The point is that the system will interpret the same

stored values according to which member component
is selected. It is the programmer's responsibility to
choose the right one.

■ Unions are used in applications that require multiple
interpretations for a given piece of memory.

– You use a union when your "thing" can be one of many
different things but you use only one at a time.

– You use a structure when your "thing" should be a group of
other things.

■ They are used to conserve storage by allowing the
same space in memory to be used for a variety of
types.

Shebuti Rayana (CS, Stony Brook University) 6

Union: Usage
■ The members of a union can be structures or other unions, and

a structure can have union members
struct flower{ struct fruit{

char *name; char *name;
enum {red, white, blue} color; int calories;

}; };

struct vegetables{ union flower_fruit_or_vegetable{
char *name; struct flower flw;
int calories; struct fruit frt;
int cooking_time; //in mins struct vegetables veg;

} ; };
Shebuti Rayana (CS, Stony Brook University) 7

Union: Usage
■ to assign a value to the member cooking_time

of the member veg in the union ffv
ffv.veg.cooking_time = 7;

Shebuti Rayana (CS, Stony Brook University) 8

A useful example
■ Networking APIs sometimes define a union for IPv4

addresses, e.g.,
union ipv4addr {

unsigned address;

char octets[4];

};

■ Most code just wants to pass around the 32-bit integer
value, but some code wants to read the individual octets
(bytes). This is all doable with masking, but it's a bit easier,
more self-documenting, and hence slightly safer to use a
union in such a fashion.

Shebuti Rayana (CS, Stony Brook University) 9

Bit Fields
■ An int or unsigned member of a structure or

union can be declared to consist of a specified
number of bits. Such a member is called a bit
field, and the number of associated bits is called
its width.

– The width is specified by a nonnegative constant integral
expression following a colon.

– The width is at most the number of bits in a machine word.
– Typically, bit fields are declared as consecutive members

of a structure, and the compiler packs them into a minimal
number of machine words.

struct pcard{

unsigned pips : 4;
unsigned suit : 2;

}; 10

Bit Fields (cont.)
struct pcard{

unsigned pips : 4;

unsigned suit : 2;

};

■ A variable of type struct pcard has a 4-bit field called pips
that is capable of storing the 16 values 0 to 15, and a 2-
bit field called suit that is capable of storing the values 0,
1, 2, and 3, which can be used to represent clubs,
diamonds, hearts, and spades, respectively.

■ thirteen pips values and the four suit values needed for
playing cards can be represented compactly with 6 bits.

Shebuti Rayana (CS, Stony Brook University) 11

Bit Fields (cont.)
struct pcard c;

■ To assign to c the nine of diamonds, "ve can write
c.pips = 9;

c.suit = 1;

■ Whether the compiler assigns the bits in left-to-right or
right-to-left order is machine dependent.

■ On a machine with 4-byte words, the declaration
struct abc{

int a : 1, b : 16, c : 16;

}x;

■ This would cause x to be stored in two words, with a and b
stored in the first and c stored in the second.

Shebuti Rayana (CS, Stony Brook University) 12

Bit Fields (cont.)
■ Only nonnegative values can be stored in unsigned bit fields.
■ For int bit fields, what happens is system-dependent. On some

systems the high-order bit in the field is treated as the sign bit.
– In most applications, unsigned bit fields are used.
■ The chief reason for using bit fields is to conserve memory.
– On machines with 4-byte words, we can store 32 1-bit variables in a

single word. Alternatively, we could use 32 char variables.
– The amount of memory saved by using bit fields can be substantial.
■ There are some restrictions:
– Arrays of bit fields are not allowed.
– address operator & cannot be applied to bit fields. This means that a

pointer cannot be used to address a bit field directly, although use of
the member access operator -> is acceptable.

■ Unnamed bit fields can be used for padding and alignment
purposes.

– Suppose our machine has 4-byte words, and suppose we want to have
a structure that contains six 7-bit fields with three of the bit fields in
the first word and three in second. 13

Bit Field Alignment
struct small_integers {

unsigned i1 : 7, i2 : 7, i3 : 7,

: 11, /* align to next word */

i4 : 7, i5 : 7, i6 : 7;

} ;

■ Another way to create alignment to the next word is to use a
unnamed bit field with a zero width

struct abc{

unsigned a : 1, : 0, b : 1, : 0, c : 1;

};

■ This creates three 1-bit fields in three separate words.

Shebuti Rayana (CS, Stony Brook University) 14

Example: Accessing bits and bytes
■ How the bits and bytes of a word in memory

can be accessed?
■ Using,
– Bitwise operators and expressions
– Masks
– Using bit fields

Shebuti Rayana (CS, Stony Brook University) 15

16

Example: Accessing bits and bytes
■ On one machine, this program caused the

following to be printed:
w.i = 353

00000000 00000000 00000001 01100001
■ whereas on another machine
w.i 1635778560

01100001 10000000 00000000 00000000
■ Because machines vary with respect to word

size and with respect to how bits and bytes are
counted, code that uses bit fields may not be
portable.

Shebuti Rayana (CS, Stony Brook University) 17

Abstract Data Type
■ The term abstract data type (ADT) is used in computer

science to mean a data structure together with its
operations, without specifying an implementation.

– Suppose we wanted a new integer type, one that could hold
arbitrarily large values. The new integer type together with its
arithmetic operations is an ADT.

■ Programmer-defined types are frequently implemented
with structures. For example, stack is an ADT which is one
of the most useful standard data structures.

Shebuti Rayana (CS, Stony Brook University) 18

Stack
■ A stack is a data structure that allows insertion and

deletion of data to occur only at a single restricted
element, the top of the stack. This is the last-in-first-out
(LIFO) discipline.

– a stack behaves like a pile of trays that pops up or is pushed
down when trays are removed or added.

■ The typical operations that can be used with a stack
are push, pop, top, empty, full, and reset.

Shebuti Rayana (CS, Stony Brook University) 19

The push operator places a value on the stack
The pop operator removes a value off the stack
The top operator returns the top value from the stack
The empty operator tests if the stack is empty.
The full operator tests if the stack is full.
The reset operator clears the stack, or initializes it.
The stack, along with these operations, is a typical ADT.

Stack: Implementation
■ We will use a fixed-length char array to store

the contents of the stack
■ The top of the stack will be an integer-

valued member named top.
■ The various stack operations will be

implemented as functions, each of whose
parameter lists includes a parameter of
type pointer to stack
■ By using a pointer, we avoid copying a

potentially large stack to perform a simple
operation.

Shebuti Rayana (CS, Stony Brook University) 20

Stack: Implementation

Shebuti Rayana (CS, Stony Brook University) 21

Stack: Test Code to Reverse String

Shebuti Rayana (CS, Stony Brook University) 22

