
CSE 230
Intermediate Programming

in C and C++
Structures

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/

Introduction
■ In C, you can define data types that are

constructed from the fundamental types.
– For example, an array type is an example of this; it is a

derived type that is used to represent homogeneous data.

■ In contrast, the structure type is used to represent
heterogeneous data.

– A structure has components, called members, that are
individually named. Because the members of a structure
can be of various types, the programmer can create
aggregates of data that are suitable for a particular
application.

Shebuti Rayana (CS, Stony Brook University) 2

Structures
■ Provides a means to aggregate variables of different

types
■ Example: A structure to define a playing card
– The spots on a card that represent its numeric value are called "pips." A

playing card such as the three of spades has a pip value, 3, and a suit
value, spades.

struct card {

int pips;

char suit;

} ;

■ The variable pips will take values from 1 to 13, representing
ace to king; the variable suit will take values from ‘c’, ‘d’, ‘h’,
and ‘s’, representing the suits clubs, diamonds, hearts, and
spades, respectively.

Shebuti Rayana (CS, Stony Brook University) 3

(i) struct is a keyword, (ii) card is
the structure tag name, and (iii) the
variables pips and suit are members
of the structure.

Structures (cont.)
■ The declaration can be thought of as a template;

it creates the struct card, but no storage is
allocated.

■ The tag name, along with the keyword struct,
can now be used to declare variables of this type.
struct card c1, c2;

– This declaration allocates storage for the identifiers c1
and c2, which are of struct card.

struct card {

int pips;

char suit;

} c1,c2;
Shebuti Rayana (CS, Stony Brook University) 4

To access the members of a structure,
member access operator “.” is used.
c1.pips = 3;
c1.suit = ‘s’;
structure_ variable. member_name

Structure (cont.)
■ If we want c2 to represent the same playing card

as c1, c2 = c1;
– This causes each member of c2 to be assigned the value

of the corresponding member of c1.

■ Programmers commonly use the typedef
mechanism when using structure types.
typedef struct card card;

■ Now, if we want more variables to represent
playing cards,
card c3, c4, c5;

Shebuti Rayana (CS, Stony Brook University) 5

Structure Member Naming
■ Within a given structure, the member names must be

unique.
– However, members in different structures are allowed to have the

same name. This does not create confusion because a member is
always accessed through a structure identifier.

struct fruit { struct vegetable {
char *name; char *name;
int calories; int calories;

}; };
struct fruit a;
struct vegetable b;

■ You can access a.calories and b.calories
without ambiguity

Shebuti Rayana (CS, Stony Brook University) 6

Structure Declaration
■ Structure declaration ::= struct_specifier declarator_list;

■ Struct_specifier ::= struct tag_name

I struct tag_nameopt { {
member_declaration} 1+ }

■ tag_name :: = identifier

■ member_declaration :: = type_specifier declarator_list

■ declarator_list :: = declarator { , declarator }0+

Shebuti Rayana (CS, Stony Brook University) 7

Structures (cont.)
■ Structures can be complicated.
– They can contain members that are themselves arrays or

structures
– we can have arrays of structures

Shebuti Rayana (CS, Stony Brook University) 8

struct card {
int pips;
char suit;

}deck[52];

• the identifier deck is
declared to be an array
of struct card

• If a tag name is not supplied,
then the structure type cannot
be used in later declarations.

• It is usually good programming
practice to associate a tag
name with a structure type.

Example

Shebuti Rayana (CS, Stony Brook University) 9

struct {
int day, month, year;
char day_name[4]; /* Mon, Tue, Wed, etc. */
char month_name[4]; /* Jan, Feb, Mar, etc. */

} yesterday, today, tomorrow;

struct date{
int day, month, year;
char day_name[4]; /* Mon, Tue, Wed, etc. */
char month_name[4]; /* Jan, Feb, Mar, etc. */

} yesterday, today, tomorrow;

struct date yesterday, today, tomorrow;

*more variables of this type cannot be declared later.

Structures (cont.)
■ When using typedef to name a structure type,

the tag name may be unimportant.

– The type complex now serves in place of the structure
type. The programmer achieves a high degree of
modularity and portability by using typedef to name
such derived types and by storing them in header files.

Shebuti Rayana (CS, Stony Brook University) 10

typedef struct{
float re;
float im;

} complex;
complex a, b, c[100];

Accessing Members of a Structure
■ Member access operators: “.” and “->”

Shebuti Rayana (CS, Stony Brook University) 11

In file class_info.h
#define CLASS_SIZE 100
struct student {

char *last_name;
int student_id;
char grade;

} ;

Suppose we are writing a
program called class_info,
which generates information
about a class of 100 students.

#include "class_info.h"
int main(void)
{
struct student tmp, class[CLASS_SIZE];
… …
tmp.grade = ‘A’; tmp.lastname = “john”;
tmp.student_id = 910017;

Accessing Members of a Structure
■ Now suppose we want to count the number of

failing students in a given class.
– To do this, we write a function named fail() that

counts the number of F grades in the array class[].
■ The grade member of each element in the array of structures must be

accessed.

Shebuti Rayana (CS, Stony Brook University) 12

/* Count the failing grades. */
#include ”class_info.h"
int fail(struct student class[])
{

int i, cnt 0;
for (i = 0; i < CLASS_SIZE; ++i)

cnt += class[i].grade == ‘F’;
return cnt;

}

Accessing Members of a Structure
■ C provides the member access operator -> to access the

members of a structure via a pointer.
– This operator is typed on the keyboard as a minus sign followed by a

greater than sign.
– If a pointer variable is assigned the address of a structure, then a

member of the structure can be accessed by a construct of the form
pointer_to_structure -> member_name

■ A construct that is equivalent to the above is
(*pointer_to_structure).member_name

■ The parentheses are necessary. Along with () and [], the
operators “.” and -> have the highest precedence and
associate from left to right.

– Thus, the preceding construct without parentheses would be
equivalent to
*(pointer_to_structure. member_name)

– This is an error because only a structure can be used with the "."
operator, not a pointer to a structure. 13

Example: add complex numbers
In file complex.h
struct complex{

double re; /*real part*/

double im; /*imag part*/
};

typedef struct complex complex;

In file 2_add.c
#include <complex.h>

/* a = b + c */
void add(complex *a, complex *b, complex *c){

a->re = b->re + c->re;
a->im = b->im + c->im;

}
Shebuti Rayana (CS, Stony Brook University) 14

Example: Member Access
Declaration and Assignment

struct student tmp, *p = &tmp;
tmp.grade = 'A';
tmp.last_name = "Casanova";
tmp.student_id = 910017;
Expression Equivalent Expression Conceptual Value
tmp.grade p->grade A
tmp.last_name p->last_name Casanova
(*p).student_id p->student_id 910017
p->last_name+1 ((p->last_name))+1 D
*(p->last_name + 2) (p->last_name)[2] s

Shebuti Rayana (CS, Stony Brook University) 15

Using Structures with Functions
■ Structures can be passed as arguments to a

function and can be returned from them.
■ When a structure is passed as an argument to a

function, it is passed by value, meaning that a
local copy is made for use in the body.

– If a member of the structure is an array, then the array
gets copied as well.

– If the structure has many members, or members that are
large arrays, then passing the structure as an argument
can be relatively inefficient.

■ An alternate scheme is to write functions that take
an address of the structure as an argument
instead.

Shebuti Rayana (CS, Stony Brook University) 16

Example: Business Application

typedef struct {

char name[25];

int employee_id;

struct dept department;

struct home_address *a_ptr;

double salary;

} employee_data;

Shebuti Rayana (CS, Stony Brook University) 17

Structure type member

struct dept {
char dept_name[25];
int dep_no;

} ;

the compiler has to know
the size of each member

Pointer to a Structure

the compiler already knows
the size of a pointer, this
structure need not be
defined first.

Example: Business Application
■ Function to update employee information

– we are accessing a member of a structure within a structure
e.department.dept_no is equivalent to
(e.department).dept_no

■ To use the function update(), we could write in
main() or in some other function
employee_data e;

e = update(e);
18

employee_data update(employee_data e)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
e.department.dept_no = n;
return e;

}

Copy Problem

employee_data e;

e = update(e);

■ e is being passed by value, causing a local copy of e to be
used in the body of the function; when a structure is
returned from update(), it is assigned to e, causing a
member-by-member copy to be performed. Because the
structure is large, the compiler must do a lot of copy work.

Shebuti Rayana (CS, Stony Brook University) 19

employee_data update(employee_data e)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
e.department.dept_no = n;
return e;

}

Alternate: Update Function

p->department.dept_no is equivalent to (p->department).dept_no

This version of update() can be used in main() as follows:
employee_data e;

update(&e);

■ Here, the address of e is being passed, so no local copy of the
structure is needed within the update() function. For most
applications this is the more efficient of the two methods.

Shebuti Rayana (CS, Stony Brook University) 20

void update(employee_data *p)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
p->department.dept_no = n;

}

Initialization of Structures

Shebuti Rayana (CS, Stony Brook University) 21

card c = {l3, 'h'}; /* the king of hearts */
complex a[3][3] = {
{{1.0, -0.1}, {2.0, 0.2}, {3.0, 0.3}},
{{4.0, -0.4}, {5.0, 0.5}, {6.0, 0.6}},
}; /* a[2][] is assigned zeroes */
struct fruit frt = {"plum", 150};
struct home_address {

char *street;
char *city_and_state;
long zip_code;

} address = {"87 West Street", "Aspen, Colorado", 80526};
struct home_address previous_address = {0};

The last example illustrates a convenient way to initialize all members of a
structure to have value zero. It causes pointer members to be initialized
with the pointer value NULL and array members to have their elements
initialized to zero.

If not explicitly initialized by the programmer structures are automatically
initialized by the system to zero. Structure initialization is similar to array.

An Example: Playing Poker
■ The program will compute the probability that a flush is dealt, meaning

that all five cards in a hand are of the same suit.

Shebuti Rayana (CS, Stony Brook University) 22

An Example: Playing Poker

Shebuti Rayana (CS, Stony Brook University) 23

An Example: Playing Poker

Shebuti Rayana (CS, Stony Brook University) 24

An Example: Playing Poker

Shebuti Rayana (CS, Stony Brook University) 25

An Example: Playing Poker

Shebuti Rayana (CS, Stony Brook University) 26

An Example: Playing Poker

Shebuti Rayana (CS, Stony Brook University) 27

