
CSE 230
Intermediate Programming

in C and C++
The Preprocessor

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/

Introduction
■ C uses preprocessor to extend its power and

notations, e.g., #include, #define
■ #define macro: can be used to generate inline

code that takes the place of a function call.
– can reduce program execution time.

■ Lines that begin with a # are called preprocessing
directives.

– These lines communicate with the preprocessor.

■ The effect of a preprocessing directive starts at its
place in a file and continues until the end of that
file, or until its effect is negated by another
directive.

Shebuti Rayana (CS, Stony Brook University) 2

The use of #include
■ Preprocessing directive:
#include <stdio.h>
#include <stdlib.h>

– This causes the preprocessor to replace the line with a
copy of the contents of the named file.

– The preprocessor looks for the file only in the other places
and not in the current directory.

– In UNIX systems, the standard header files such as stdio.h
and stdlib.h are typically found in /usr/include

■ Another form: #include “filename”
– A search for the file is made first in the current directory

and then in other system-dependent places.
Shebuti Rayana (CS, Stony Brook University) 3

The use of #include (cont.)
■ There is no restriction on what a
#include file can contain.
■ It can contain other preprocessing

directives that will be expanded by the
preprocessor in turn.

Shebuti Rayana (CS, Stony Brook University) 4

The use of #define
■ Occur in two forms:

#define identifier token_stringopt
#define identifier(identifier1, …, \
identifiern) token_stringopt

– The token_string is optional.
– A long definition can be continued to the next line by

placing a backslash \ at the end of the current line.
– If a simple #define of the first form occurs in a file, the

preprocessor replaces every occurrence of identifier
by token_string in the remainder of the file, except in
quoted strings.

– The use of simple #define can improve program clarity
and portability.

– Shebuti Rayana (CS, Stony Brook University) 5

Example: #define
■ #define SECONDS_PER_DAY (60*60*24)

■ #define PI 3.14159

■ #define c 299792.458 //speed of light km/s

■ #define EOF (-1) //end-of-file marker

■ #define MAXINT 2147483647

■ #define ITERS 50 //number of iterations

■ #define SIZE 250 //array size

■ #define EPS 1.0e-9 //numerical constant

■ #define EQ ==

Shebuti Rayana (CS, Stony Brook University) 6

Macros with Arguments
■ General form:
#define identifier(identifier1, …,\
identifiern) token_stringopt

– Can have zero or more parameters

■ Example: #define SQ(x) ((x)*(x))
– With argument 7 + w:

SQ(7 + w) expands to ((7 + w)*(7 + w))
– Similarly,

SQ(SQ(*p)) expands to ((((*p)*(*p))) * (((*p)*(*p))))

■ This seemingly extravagant use of parentheses is to
protect against the macro expanding an expression
so that it led to an unanticipated order of evaluation.

Shebuti Rayana (CS, Stony Brook University) 7

No space

Macros with Arguments (cont.)
■ Why all the parenthesis are important?
1. Suppose we have: #define SQ(x) x*x
– Then for a + b:

SQ(a + b) expands to a + b * a + b which is not same as
((a + b) * (a + b))

2. #define SQ(x) (x) * (x)
– 4 / SQ(2) expands to 4 / (2) * (2) which is not same as

4 / ((2) * (2))

3. #define SQ (x) ((x)*(x))
– SQ(7) expands to (x) ((x)*(x))(7) /* wrong */

Shebuti Rayana (CS, Stony Brook University) 8

A common mistake with #define
■ Putting semicolon at the end of #define
■ #define SQ(x) ((x) * ((x)); /*
error */

■ x = SQ(y); gets expanded to x = ((y)
* (y));;

– Creates an unwanted null statement
■ if (x == 2)

x = SQ(y);
else
++x;

■ The extra semicolon does not allow the else to
be attached to the if statement.

Shebuti Rayana (CS, Stony Brook University) 9

Macros as Function call
■ Instead of writing a function to find the minimum

of two values, a programmer could write
#define min(x,y) (((x) < (y)) ? (x) : (y))

■ m = min(u,v) expand to
m = (((u) < (v)) ? (u) : (v))

– The arguments of min() can be arbitrary expressions of
compatible type.

■ We can use min() to define another macro,
#define min4(a,b,c,d) \
min(min(a,b),min(c,d))

Shebuti Rayana (CS, Stony Brook University) 10

Macros as Function call (cont.)
■ A macro definition can use both functions and

macros in its body.
#define SQ(x) ((x) * (x))

#define CUBE(x) (SQ(x) * (x))

#define F_POW(x) sqrt(sqrt(CUBE(x)))
/* fractional power:3/4 */

Shebuti Rayana (CS, Stony Brook University) 11

Use of #undef
■ A preprocessing directive of the form
#undef identifier

– will undefine a macro.
– It causes the previous definition of a macro to be

forgotten.

Shebuti Rayana (CS, Stony Brook University) 12

Type Definition
■ C provides the typedef facility so that an

identifier can be associated with a specific type.
■ Example: typedef char uppercase;
– This makes uppercase a type that is synonymous with

char, and it can be used in declarations
uppercase c, u[1100];

Shebuti Rayana (CS, Stony Brook University) 13

Type Definition and Macros in
stddef.h
■ typedef int ptrdif_t; /* pointer difference type */
– The type ptrdif_t tells what type is obtained with an

expression involving the difference of two pointers.

■ typedef short wchar_t; /* wide character type */
– The type wchar_t is provided to support languages with

character sets that will not fit into a char.

■ typedef unsigned size_t; /* the sizeof type */
■ The macro NULL is also given in stddef.h. It is an

implementation-defined null pointer constant.
– NULL is defined to be 0, but on some systems it is given

by #define NULL ((void *) 0)
Shebuti Rayana (CS, Stony Brook University) 14

Example: qsort()
■ Function prototype of quicksort in stdlib.h
void qsort(void * array, size_t
n_els, size_t el_size, int
compare(const void*, const void*))

■ The comparison function returns an int that is
less than, equal to, or greater than zero,
depending on whether its first argument is
considered to be less than, equal to, or greater
than its second argument.

Shebuti Rayana (CS, Stony Brook University) 15

Test program for qsort()

Shebuti Rayana (CS, Stony Brook University) 16

Test program for qsort() (cont.)

Shebuti Rayana (CS, Stony Brook University) 17

Test program for qsort() (cont.)

Shebuti Rayana (CS, Stony Brook University) 18

Test code qsort() with macros

Shebuti Rayana (CS, Stony Brook University) 19

Test code qsort() with macros (cont.)

Shebuti Rayana (CS, Stony Brook University) 20

Test code qsort() with macros (cont.)

Shebuti Rayana (CS, Stony Brook University) 21

Macros in stdio.h and ctype.h
■ Macros getc() and putc()

are in stdio.h.
– (i) read a character from a file,

(ii) write a character to a file.

#define getchar()\
getc(stdin)

#define putchar(c)\
putc((c), stdout)
– (i) read characters from the

keyboard (ii) write characters to
the screen

Shebuti Rayana (CS, Stony Brook University) 22

Conditional Compilation
■ The preprocessor has directives for conditional compilation.
– They can be used for program development and for writing code that is

more easily portable from one machine to another.

#if constanl_integral_expression

#ifdef identifier

#ifndef identifier

provides for conditional compilation of the code that follows until
the preprocessing directive

■ #endif is reached. For the intervening code to be compiled,
after #if the constant expression must be nonzero (true), and
after #ifdef or after #ifndef, the named identifier must have
been defined previously in a #define line, without an intervening
#undef identifier having been used to undefine the macro.

Shebuti Rayana (CS, Stony Brook University) 23

Example: Conditional Compilation
■ Sometimes printf() statements are useful for debugging

purposes. Suppose that at the top of a file we write
#define DEBUG 1

■ and then throughout the rest of the file we write lines
such as

#if DEBUG

printf("debug: a = %d\n”, a);

#endif

Shebuti Rayana (CS, Stony Brook University) 24

The Predefined Macros

Shebuti Rayana (CS, Stony Brook University) 25

Predefined macro Value
__DATE__ A string containing the current date
__FILE__ A string containing the file name
__LINE__ An integer representing the current line

number
__STDC__ If the implementation follows ANSI

Standard C, then the value is a nonzero
integer,

__TIME__ A string containing the current time

Operators # and ##

■ Unary # causes arguments to be surrounded by
double quote

■ Binary ## used to merge tokens
#define X(i) x ## i

X(1) = X(2) = X(3); expand to
x1 = x2 = x3;

Shebuti Rayana (CS, Stony Brook University) 26

The assert() Macro
■ This macro in the standard header file assert.h
■ This macro can be used to ensure that the value

of an expression is what you expect it to be.
■ Suppose that you are writing a critical function

and that you want to be sure the arguments
satisfy certain conditions.

■ If an assertion fails, then
the system will print out a
message and abort the
program.

Shebuti Rayana (CS, Stony Brook University) 27

Use of #error
#if A_SIZE < B_SIZE

#error "Incompatible sizes"

#endif

■ If during compilation the preprocessor reaches the #error
directive, then a compile time error will occur, and the
string following the directive will be printed on the screen.

Shebuti Rayana (CS, Stony Brook University) 28

