CSE 230
Intermediate Programming

in C and C++
Bitwise Operators and
Enumeration Types

Fall 2017
Stony Brook University
Instructor: Shebuti Rayana

Overview
m Bitwise Operators

The bitwise operators act on integral expressions
represented as binary digits.

Expressions with bitwise operators are explicitly
system-dependent

Useful in packing and unpacking data

Enumeration Types
User defined types

Allow the programmer to name a finite set
together with its elements, which are called
enumerators

Shebuti Rayana (CS, Stony Brook University) 2

Bitwise Operators

Logical (unary) bitwise =
Operators complement

Bitwise AND &

Bitwise inclusive |
OR

Bitwise exclusive *
OR

Shift Operators Left shift <<
Right shift >>

Shebuti Rayana (CS, Stony Brook University)

Precedence and Associativity

() [++(postfix) —-(postfix)

++ -- (prefix) | ~ sizeof() + - (unary) &(address)

*(pointer)
* / %

+= -= * = /= %:

, (comma)

<<=

>>=

Left to right
Right to left

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

Bitwise Complement

m ~ IS called one’s complement

Inverts all the bits, (O’s become 1’s and 1’s
become O’s)

Example: int a = 70707; In binary
00000000 00000001 00010100 00110011

~a Is one’s complement for a
11111111 11111110 11101011 11001100

So ~a becomes -70708

Shebuti Rayana (CS, Stony Brook University)

Two’s Complement

m The two's complement representation of a nonnegative
integer n is the bit string obtained by writing n in base 2.

m |f we take the bitwise complement of the bit string and add
1 to it, we obtain the two's complement representation of

-n
Value | Binary Bitwise Two’s Complement Value
of n | Representation Complement Representation of -n | of -n
00000000 00000111 11111111 11111000 11111111 11111001 -7
8 00000000 00001000 11111111 11110111 11111111 11111000 -8
O 00000000 00001001 11111111 11110110 11111111 11110111 -9
-7 11111111 11111001 00000000 00000110 00000000 00000111 7

*Two lower order bytes in 4 bytes machine

*A machine which uses this representation is called a two’s complement machine
Shebuti Rayana (CS, Stony Brook University)

Two’s Complement (cont.)

O : all bits off, -1: all bits on

if a binary string is added to its bitwise complement the
result has all bits on, which is the two's complement
representation of -1.

Negative numbers are characterized by having the high
bit on.

On a two's complement machine, the hardware that
does addition and bitwise complementation can be used
to implement subtraction. The operation a - b is the
same as a + (-b), and -b is obtained by taking the bitwise
complement of b and adding 1.

Shebuti Rayana (CS, Stony Brook University)

Bitwise Binary Logical Operators

a b a&b a’™b alb
0 0] 0 0] 0
0 1 0 1 1
1 0] 0 1 1
1 1 1 0] 1

*Qperated on bit position by bit position

Shebuti Rayana (CS, Stony Brook University)

Examples: Bitwise Operators

int a = 33333; int b = =77777;

Expression Representation Value

a 00000000 00000000 10000010 00110101 33333

b 11111111 11111110 11010000 00101111 77777
asb 00000000 00000000 10000000 00100101 32805
a’b 11111111 11111110 01010010 00011010 110054
alb 11111111 11111110 11010010 00111111 _77249
~(a|b) 00000000 00000001 00101101 11000000 77248
(~a&~b) 00000000 00000001 00101101 11000000 77248

De Morgan’s Law: ~ (a|b) = (~a&~b), ~(a&b) = (~a|~b)
Shebuti Rayana (CS, Stony Brook University)

Left Shift Operator

The two operands of a left shift operator must be
Integral expressions.

Example: exprl << expr?2, the bit
representation of exprl is shifted to the left by
expr2 positions.

On the low-order end, O’s are shifted in.

Both the operands are promoted to integral types before
shifting
The resulting type is the type of left operand

Shebuti Rayana (CS, Stony Brook University) 10

Example: Left shift

Charc =7

Expression Representation Action

C 00000000 00000000 00000000 01011010 | nshifted

c<<1 00000000 00000000 00000000 10110100) | eft
shifted 1

c<< 4 00000000 00000000 00000101 10100000) | ft
shifted 4

c<< 31 0000000 00000000 00000000 00000000 | eft
shifted 31

Shebuti Rayana (CS, Stony Brook University) 11

Right Shift Operator

The right shift operator is not similar to the left
shift operator

For unsigned expressions shifted positions are
filled with O’s

But for signed expressions: (i) some machines
shift in O’s, and (ii) some shift in the sign bit (left
most bit or high order bit)

Sign bit is O for nonnegative integers and 1 for negative
Integers

Shebuti Rayana (CS, Stony Brook University) 12

Example: Right Shift

int a = 1 << 31; // shift 1 to the high bit
unsigned b = 1 << 31;

Expression Representation Action
3 10000000 00000000 00000000 00000000 nshifted
g >> 3 11110000 00000000 00000000 00000000 Rjght

shifted 3
b 10000000 00000000 00000000 00000000 nshifted
b>>3 00010000 00000000 00000000 00000000 Rijght

shifted 3

If the right operand of a shift operator is negative or has a value that equals or
exceeds the number of bits used to represent the left operand, then the behavior is

undefined.
Shebuti Rayana (CS, Stony Brook University) 13

Precedence and Associativity

unsigned a = 1, b = 2;

Expression Equivalent Representation Value
Expression

a<1 (a<<b)>>1 00000000 00000010 2

a<<1+2<<3 (a<<(1+2)) 0000000001000000 64
<< 3

atb<<12*a ((a+b)<< (12 00001100 00000000 3072
>> b *a))>>b

*two low order bytes are shown only
*in C++, the two shift operators are overloaded and used for input/output. Overload
-ing in C++ is a method of giving existing operators and functions additional meanings.

Shebuti Rayana (CS, Stony Brook University) 14

Masks

m A mask is a constant or variable, that is used to
extract desired bits from another variable or
expression.

m if we wish to find the value of a particular bit in an
expression, we can use a mask that is 1 in that
position and O elsewhere.

m Example: 00000000 00000000 00000000 00000001
int 1, mask = 1;
for (1=0; 1<10,; i1++);
printf (“sd ”, 1 & mask);

m This code prints the right most bit of every number
in the range [0,9]

Shebuti Rayana (CS, Stony Brook University) 15

More Example: Mask
m 1 << 2, can be used as a mask for third bit
B (v & (1 << 2)) 21 0

m Another mask is 255 =28 - 1,
00000000 00000000 00000000 11111111

- v & 255 will give only the low order byte, as such,
255 is called mask for low-order byte

Shebuti Rayana (CS, Stony Brook University) 16

Printing an Integer Bitwise

#include <limits.h>
volid bilt print(int a) {
int 1i;
int n = sizeof(int) * CHAR BIT;
int mask = 1 << (n - 1); // mask 100..0

for(i=1; 1 < n; i++){

putchar(((a & mask) == 0) 2 ‘0’':"717);
a <<= 1;
1f(1 % CHARBIT == 0 && 1 < n)

putchar (' ") ;

Shebuti Rayana (CS, Stony Brook University) 17

Packing

m Bitwise expressions help in data compression

- Saving both time and space

m Example: pack 4 char into an int

#include <limits.h>

int pack(char a, char b,

int p = a;

p = (p << CHAR BIT)
p = (p << CHAR BIT)
p = (p << CHAR BIT)

return p;

char ¢,

char d) {

Shebuti Rayana (CS, Stony Brook University)

18

Packing (cont.)

printf ("abcd == ");

bit print(pack('a', 'b', 'c', 'd'));
putchar (' \n');

m Output: 97 o8
abed = 01100001 01100010

01100011 01100100
99 100

Shebuti Rayana (CS, Stony Brook University) 19

Unpacking

#include <limits.h>

int unpack(int p, int k){ //k=0,1,2,3

int n = k*CHAR BIT;

unsigned mask = 255;

mask <= n;

return ((p & mask)

//n=0,8,16,24

>> n);

Shebuti Rayana (CS, Stony Brook University)

20

Unpacking (cont.)

11111111 11001001 01100000 10010111 -3579753

mask 00000000 11111111 00000000 00000000 16711680

p & mas k 00000000 11001001 00000000 OOOO0000 13172736
(p & mask) >> 00000000 00000000 60000000 11001001 201

n

Shebuti Rayana (CS, Stony Brook University) 2 1

Enumeration Types

User defined types

Provides a means of naming a finite set, and
declaring identifiers as elements of the set.

Keyword: enum

Example:
enum day {sun, mon, tue, wed, thu,

fri, sat}
day is a user defined enumeration type
The identifiers sun, .., sat are constants of type int

By default, the first one is O, and each succeeding one has
the next integer value.

Shebuti Rayana (CS, Stony Brook University) 22

Enumeration Types (cont.)

This declaration is an example of a type specifier,
which we also think of as a template.

Declaration of a variable of type enum:
enum day dl, dZ;

d1l and d2 can only take values from the set day
Initialization: d1 = fri;

Condition check:
if(dl == d2) {/*do something*/}

enum day Iis atype, enum by itself is not a type

Shebuti Rayana (CS, Stony Brook University) 23

Enumeration Types (cont.)

The enumerators can be initialized

m Variables can be declared along with the template

enum sult {clubs = 1, diamonds,
hearts, spades} a, b, c;

As clubs is initialized to 1, diamonds, hearts, and spades have the
values 2,3, and 4, respectively.

enum fruit {apple = 7, pear, orange =
3, lemon} frt;

As apple is initialized to 7, pear has value 8. Similarly, because orange
has value 3, lemon has value 4.

Valid types:
enum veg {beet = 17, carrot = 17, corn
= 17} vegel, vegeZ;

enum {fir, pine} tree;
Shebuti Rayana (CS, Stony Brook University) 24

Example: enum
/* compute the next day */

enum day {sun, mon, tue, wed, thu,
fri, sat}

typedetf enum day day;
day find next day(day d) {
1f((1nt) d >= 0 && (1nt) d < 7)
return ((day) (((1nt)d+1)));

Shebuti Rayana (CS, Stony Brook University) 25

