
CSE 230
Intermediate Programming

in C and C++
Bitwise Operators and

Enumeration Types
Fall 2017

Stony Brook University
Instructor: Shebuti Rayana

http://www3.cs.stonybrook.edu/~cse230/

Overview
■ Bitwise Operators
– The bitwise operators act on integral expressions

represented as binary digits.
– Expressions with bitwise operators are explicitly

system-dependent
– Useful in packing and unpacking data
■ Enumeration Types
– User defined types
– Allow the programmer to name a finite set

together with its elements, which are called
enumerators

Shebuti Rayana (CS, Stony Brook University) 2

Bitwise Operators
Types of Bitwise Operators

Logical
Operators

(unary) bitwise
complement

~

Bitwise AND &
Bitwise inclusive
OR

|

Bitwise exclusive
OR

^

Shift Operators Left shift <<
Right shift >>

Shebuti Rayana (CS, Stony Brook University) 3

Precedence and Associativity

Shebuti Rayana(CS, Stony Brook University) 4

Operators Associativity

() [] ++(postfix) --(postfix) Left to right

++ -- (prefix) ! ~ sizeof() + - (unary) &(address)
*(pointer)

Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= <<= >>= &= ^= |= Right to left

, (comma) Left to right

Bitwise Complement
■ ~ is called one’s complement
– Inverts all the bits, (0’s become 1’s and 1’s

become 0’s)
– Example: int a = 70707; in binary

00000000 00000001 00010100 00110011
– ~a is one’s complement for a

11111111 11111110 11101011 11001100
– So ~a becomes -70708

Shebuti Rayana (CS, Stony Brook University) 5

Two’s Complement
■ The two's complement representation of a nonnegative

integer n is the bit string obtained by writing n in base 2.

■ If we take the bitwise complement of the bit string and add
1 to it, we obtain the two's complement representation of
-n

Shebuti Rayana (CS, Stony Brook University) 6

Value
of n

Binary
Representation

Bitwise
Complement

Two’s Complement
Representation of -n

Value
of -n

7 00000000 00000111 11111111 11111000 11111111 11111001 -7
8 00000000 00001000 11111111 11110111 11111111 11111000 -8
9 00000000 00001001 11111111 11110110 11111111 11110111 -9
-7 11111111 11111001 00000000 00000110 00000000 00000111 7

*Two lower order bytes in 4 bytes machine
*A machine which uses this representation is called a two’s complement machine

Two’s Complement (cont.)
■ O : all bits off, -1: all bits on

■ if a binary string is added to its bitwise complement the
result has all bits on, which is the two's complement
representation of -1.

■ Negative numbers are characterized by having the high
bit on.

■ On a two's complement machine, the hardware that
does addition and bitwise complementation can be used
to implement subtraction. The operation a - b is the
same as a + (-b), and -b is obtained by taking the bitwise
complement of b and adding 1.

Shebuti Rayana (CS, Stony Brook University) 7

Bitwise Binary Logical Operators
Single bit Operations

a b a&b a^b a|b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 1

Shebuti Rayana (CS, Stony Brook University) 8

*Operated on bit position by bit position

Examples: Bitwise Operators
Declaration and Initialization
int a = 33333; int b = -77777;

Expression Representation Value
a 00000000 00000000 10000010 00110101 33333
b 11111111 11111110 11010000 00101111 -77777
a&b 00000000 00000000 10000000 00100101 32805
a^b 11111111 11111110 01010010 00011010 -110054
a|b 11111111 11111110 11010010 00111111 -77249
~(a|b) 00000000 00000001 00101101 11000000 77248
(~a&~b) 00000000 00000001 00101101 11000000 77248

Shebuti Rayana (CS, Stony Brook University) 9
De Morgan’s Law: ~(a|b) = (~a&~b), ~(a&b) = (~a|~b)

Left Shift Operator
■ The two operands of a left shift operator must be

integral expressions.
■ Example: expr1 << expr2, the bit

representation of expr1 is shifted to the left by
expr2 positions.

– On the low-order end, O’s are shifted in.
– Both the operands are promoted to integral types before

shifting
– The resulting type is the type of left operand

Shebuti Rayana (CS, Stony Brook University) 10

Example: Left shift
Declaration and Initialization
Char c = ‘Z’;
Expression Representation Action

c 00000000 00000000 00000000 01011010 unshifted
c << 1 00000000 00000000 00000000 10110100 Left

shifted 1
c << 4 00000000 00000000 00000101 10100000 Left

shifted 4
c << 31 00000000 00000000 00000000 00000000 Left

shifted 31

Shebuti Rayana (CS, Stony Brook University) 11

Right Shift Operator
■ The right shift operator is not similar to the left

shift operator
■ For unsigned expressions shifted positions are

filled with 0’s
■ But for signed expressions: (i) some machines

shift in 0’s, and (ii) some shift in the sign bit (left
most bit or high order bit)

– Sign bit is 0 for nonnegative integers and 1 for negative
integers

Shebuti Rayana (CS, Stony Brook University) 12

Example: Right Shift

Shebuti Rayana (CS, Stony Brook University) 13

Declaration and Initialization
int a = 1 << 31; // shift 1 to the high bit
unsigned b = 1 << 31;

Expression Representation Action
a 10000000 00000000 00000000 00000000 unshifted
a >> 3 11110000 00000000 00000000 00000000 Right

shifted 3
b 10000000 00000000 00000000 00000000 unshifted
b >> 3 00010000 00000000 00000000 00000000 Right

shifted 3
If the right operand of a shift operator is negative or has a value that equals or
exceeds the number of bits used to represent the left operand, then the behavior is
undefined.

Precedence and Associativity
Declaration and Assignments
unsigned a = 1, b = 2;

Expression Equivalent
Expression

Representation Value

a << b >> 1 (a << b) >> 1 00000000 00000010 2
a << 1 + 2 << 3 (a << (1 + 2))

<< 3
00000000 01000000 64

a+b << 12 * a
>> b

((a+b) << (12
* a)) >> b

00001100 00000000 3072

Shebuti Rayana (CS, Stony Brook University) 14

*two low order bytes are shown only
*in C++, the two shift operators are overloaded and used for input/output. Overload
-ing in C++ is a method of giving existing operators and functions additional meanings.

Masks
■ A mask is a constant or variable, that is used to

extract desired bits from another variable or
expression.

■ if we wish to find the value of a particular bit in an
expression, we can use a mask that is 1 in that
position and 0 elsewhere.

■ Example:
int i, mask = 1;
for(i=0; i<10; i++);
printf(“%d ”, i & mask);

■ This code prints the right most bit of every number
in the range [0,9]

Shebuti Rayana (CS, Stony Brook University) 15

00000000 00000000 00000000 00000001

More Example: Mask
■ 1 << 2, can be used as a mask for third bit
■ (v & (1 << 2)) ? 1 : 0
■ Another mask is 255 = 28 – 1 ,

– v & 255 will give only the low order byte, as such,
255 is called mask for low-order byte

Shebuti Rayana (CS, Stony Brook University) 16

00000000 00000000 00000000 11111111

Printing an Integer Bitwise
#include <limits.h>
void bit_print(int a){

int i;

int n = sizeof(int) * CHAR_BIT;
int mask = 1 << (n - 1); // mask 100…0

for(i=1; i < n; i++){

putchar(((a & mask) == 0) ? ‘0’:’1’);

a <<= 1;
if(i % CHARBIT == 0 && i < n)

putchar(‘ ’);
}

}
Shebuti Rayana (CS, Stony Brook University) 17

Packing
■ Bitwise expressions help in data compression
– Saving both time and space

■ Example: pack 4 char into an int
#include <limits.h>

int pack(char a, char b, char c, char d){

int p = a;

p = (p << CHAR_BIT) | b;

p = (p << CHAR_BIT) | c;

p = (p << CHAR_BIT) | d;

return p;

}
Shebuti Rayana (CS, Stony Brook University) 18

Packing (cont.)
printf("abcd == ");

bit_print(pack('a', 'b', 'c', 'd'));

putchar(' \n');

■ Output:
abed = 01100001 01100010
01100011 01100100

Shebuti Rayana (CS, Stony Brook University) 19

97 98

99 100

Unpacking
#include <limits.h>

int unpack(int p, int k){ //k=0,1,2,3

int n = k*CHAR_BIT; //n=0,8,16,24

unsigned mask = 255;

mask <= n;

return ((p & mask) >> n);

}

Shebuti Rayana (CS, Stony Brook University) 20

Unpacking (cont.)
Expression Binary Representation Value
p 11111111 11001001 01100000 10010111 -3579753

mask 00000000 11111111 00000000 00000000 16711680

p & mask 00000000 11001001 00000000 00000000 13172736

(p & mask) >>
n

00000000 00000000 00000000 11001001 201

Shebuti Rayana (CS, Stony Brook University) 21

Enumeration Types
■ User defined types
■ Provides a means of naming a finite set, and

declaring identifiers as elements of the set.
■ Keyword: enum

■ Example:
enum day {sun, mon, tue, wed, thu,
fri, sat}

– day is a user defined enumeration type
– The identifiers sun, …, sat are constants of type int
– By default, the first one is 0, and each succeeding one has

the next integer value.
Shebuti Rayana (CS, Stony Brook University) 22

Enumeration Types (cont.)
■ This declaration is an example of a type specifier,

which we also think of as a template.
■ Declaration of a variable of type enum:
enum day d1, d2;

– d1 and d2 can only take values from the set day

■ Initialization: d1 = fri;

■ Condition check:
if(d1 == d2){/*do something*/}

– enum day is a type, enum by itself is not a type

Shebuti Rayana (CS, Stony Brook University) 23

Enumeration Types (cont.)
■ The enumerators can be initialized
■ Variables can be declared along with the template
■ enum suit {clubs = 1, diamonds,
hearts, spades} a, b, c;

– As clubs is initialized to 1, diamonds, hearts, and spades have the
values 2,3, and 4, respectively.

■ enum fruit {apple = 7, pear, orange =
3, lemon} frt;

– As apple is initialized to 7, pear has value 8. Similarly, because orange
has value 3, lemon has value 4.

■ Valid types:
enum veg {beet = 17, carrot = 17, corn
= 17} vege1, vege2;
enum {fir, pine} tree;

Shebuti Rayana (CS, Stony Brook University) 24

Example: enum
/* compute the next day */

enum day {sun, mon, tue, wed, thu,
fri, sat}

typedef enum day day;

day find_next_day(day d){

if((int) d >= 0 && (int) d < 7)

return ((day)(((int)d+1)));

}

Shebuti Rayana (CS, Stony Brook University) 25

