
CSE 230
Intermediate Programming

in C and C++
Arrays, Pointers and Strings

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/

Pointer Arithmetic and Element Size
■ If p is a pointer to a particular type, then the

expression p + 1 yields the correct machine
address for storing or accessing the next variable
of that type.

■ Valid operations: p + i, ++p, p += 2 etc.

■ If p and q are both pointing to elements of
an array, then p - q yields the int value
representing the number of array elements
between them

Shebuti Rayana (CS, Stony Brook University) 2

Example: Pointer Arithmetic
int i = 7,*p = &i, *r;

double a[2]={0.1,0.2},*q, *s;

r = p + 1;

q = a; //q points to a[0]

s = q + 1; // s = &a[1]

printf(“%d\n”,(int)r - (int)p);

printf(“%d\n”,(int)s - (int)q);

Printf(“%d\n”,s - q);

Shebuti Rayana (CS, Stony Brook University) 3

Example: Pointer Arithmetic
printf(“%d\n”,(int)r - (int)p);

4

printf(“%d\n”,(int)s - (int)q);

8

Printf(“%d\n”, s - q);

1
– The difference in terms of array elements is 1, but

the difference in memory locations is 8 as size of
double is 8.

Shebuti Rayana (CS, Stony Brook University) 4

Arrays as Function Arguments
■ In function definition, the parameter that is

declared as an array is a pointer.
■ When an array is passed to a function the base

address (&a[0]) is passed, not the elements of
the array are copied.

■ Example:

Shebuti Rayana (CS, Stony Brook University) 5

Arrays as Function Argument
■ Following two are same:
double sum(double a[], int n)
double sum(double *a, int n)

■ Array declaration = pointer declaration in
parameter list, but not inside the function
body
■ From the caller: sum(a, n);or
sum(&a[0], n); both are correct
■ sum(&a[7], k - 7) = a[7],
a[8],…, a[k-1]

Shebuti Rayana (CS, Stony Brook University) 6

An Example: Bubble Sort

Shebuti Rayana (CS, Stony Brook University) 7

Bubble sort is expensive takes O(n2)

Each Pass of Bubble Sort

Shebuti Rayana (CS, Stony Brook University) 8

Unsorted Data 7 3 66 3 -5 22 -77 2
First Pass -77 7 3 66 3 -5 22 2
Second Pass -77 -5 7 3 66 3 2 22
Third Pass -77 -5 2 7 3 66 3 22
Fourth Pass -77 -5 2 3 7 3 66 22
Fifth Pass -77 -5 2 3 3 7 22 66
Sixth Pass -77 -5 2 3 3 7 22 66
Seventh Pass -77 -5 2 3 3 7 22 66

Dynamic Memory Allocation
■ Two standard library functions in
stdlib.h

– calloc():Contiguous memory allocation
– malloc():Memory allocation

■ Example usage of calloc():
int *a;
int n;
scanf(“%d”,&n);
a = calloc(n,sizeof(int));

■ The space is initialized with all bits set to 0
Shebuti Rayana (CS, Stony Brook University) 9

Dynamic Memory Allocation (cont.)
■ Example malloc():
a = malloc(n*sizeof(int));

■ Unlike calloc(), malloc() does not
initialize the memory locations
■ In malloc()is faster
■ Programmer must call free()to free the

allocated memory with them
■ Example: free(a);

Shebuti Rayana (CS, Stony Brook University) 10

Strings
■ One-dimensional arrays of type char terminated

with end-of-string ‘\0’ or null (byte with all bits off)
■ Size must include space for ‘\0’
■ String constants are written in double quotes, e.g.,

“abc” (character array of size 4)
■ String constant: “a” (size 2) vs character constant:

‘a’ (size 1)
– Example: char *p = “abc”;
printf(“%s %s\n”, p, p+1);
output: abc bc

Shebuti Rayana (CS, Stony Brook University) 11

Strings (cont.)
■ A string constant can be treated as a

pointer
– “abc”[1] and *(“abc” + 2) are legal

■ Arrays and pointers differences:
– char *p = “abc”; char s[] = “abc”;

Shebuti Rayana (CS, Stony Brook University) 12

p

a b c \0 a b c \0
s

4 bytes 4 bytes

4 bytes

Example: String

Shebuti Rayana (CS, Stony Brook University) 13

Library Functions for Strings
■ C provide numerous string handling functions in

standard library with header string.h
■ char *strcat(char *s1, canst char *s2);

■ int strcmp(const char *s1, const char
*s2);

– S1 is lexicographically greater, equal or less than s2
■ char *strcpy(char *s1, const char *s2);

■ size_t strlen(const char *s);

– 4 bytes machine size_t is unsigned int

Shebuti Rayana (CS, Stony Brook University) 14

Implementation: strlen()
size_t strlen(const char *s)

{

for (n = 0; *s != '\0'; ++s)

++n;

return n;

}

Shebuti Rayana (CS, Stony Brook University) 15

Implementation: strcpy()
char *strcpy(char *sl,register const char *s2)

{

register char *p = s1;

while(*p++ = *s2++)

;

return s1;

}

Shebuti Rayana (CS, Stony Brook University) 16

Implementation: strcat()

Shebuti Rayana (CS, Stony Brook University) 17

char *strcat(char *sl,register const char *s2)

{

register char *p = s1;

while(*p)

++p;

while(*p++ = *s2++)

;

return s1;

}

String: Declaration and Initialization

Shebuti Rayana (CS, Stony Brook University) 18

char s1[] = "beautiful big sky country”;
char s2[] = "how now brown cow";

Expression Value
strlen(s1) 25
strlen(s2+8) 9
strcmp(s1, s2) Negative integer

Statements What gets printed
printf(“%s”,s1+10) Big sky country
strcpy(s1+10, s2+8)

strcat(s1,”s!”)

printf(“%s”,s1) Beautiful brown cows!

Two Dimensional Arrays
int a[3][5];

Expression Equivalent to a[i][j]
*(a[i]+j)

(*(a+i))[j]

(((a+i))+j)

*(&a[0][0]+5*i+j)

Shebuti Rayana (CS, Stony Brook University) 19

Three Dimensional Arrays
int a[7][9][2]

Expression Equivalent to a[i][j][k]
*(&a[0][0][0] + 9*2*i + 2*j + k)

Arrays of Pointers
■ Arrays of pointers have many use
■ An array of char * is considered as array

of strings
■ Example: char *car_make[9];

char *car_make[9] =
{"Suzuki","Toyota","Nissan","Tata","BMW"
,"Audi","Chevrolet","Honda","Mahindra"};

■ Sort the strings in lexicographic order

Shebuti Rayana (CS, Stony Brook University) 20

Sort in Lexicographic: Example
Void sort_word(char *w[], int n) {

int i, j;

for(i=0;i<n;++i){

for(j=i+1;j<n;++j){

if(strcmp(w[i],w[j])>0)

swap(&w[i],&w[j]);

}

}

}

Shebuti Rayana (CS, Stony Brook University) 21

void swap(char **p, char **q){
char *temp;
temp = *p;
*p = *q;
*q = temp;

}

Arguments to main()
■ Two arguments named argc and argv can be

used with main()to communicate with the OS
■ Example: int
main(int argc, char *argv[])

■ argc provides a count of the number of command
line arguments

■ Array argv is an array of pointers that are the
words that make up the command line. Because
the element argv [0] contains the name of
the command itself, the value of argc is at
least 1.

Shebuti Rayana (CS, Stony Brook University) 22

Ragged Arrays
■ An array of pointers whose elements are used to

point to arrays of varying sizes is called a ragged
array.

char a[2][15] = {"abc:", "a is for
apple"};

char *p[2] = {"abc:", "a is for
apple"};

Shebuti Rayana (CS, Stony Brook University) 23

Functions as Arguments
■ In C, pointers to functions can be passed as

arguments, used in arrays, returned from
function

■ Example: you want to do an operation with a
variety of functions like ∑ 𝑓#(𝑘)'

()*

■ In one instance 𝑓 𝑘 = 𝑠𝑖𝑛(𝑘), in another
instance 𝑓 𝑘 = /

(

Shebuti Rayana (CS, Stony Brook University) 24

Implementation: Function as
Argument
double sum_square(double f(double x), int m, int n){

int k;

double sum = 0.0;

for (k = m; k <= n; ++k)

sum += f(k) * f(k);

return sum;

}

Equivalent

double sum_square(double (*f)(double x), int m, int n)

Shebuti Rayana (CS, Stony Brook University) 25

double f(double x){
return 1/x;

}

sum_square(f, 1, 100)

sum_square(sin, 1, 100)

Type Qualifier const and
volatile

■ If a variable is declared with a const
type it can not be changed
const int k = 3;

■ The volatile variables are modified
with some unspecified ways by the
hardware. Used seldom.

Shebuti Rayana (CS, Stony Brook University) 26

